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SECTION 1 

I NTROD UCT 10 N 

VertiCal takeoff and landing (VTOL) aircraft have considerable potential 

for use in a viable short-haul air transportation system. The VTOL aircraft used in this 

context would provide convenient, safe and reliable access to lang-haul air transporta

tion by providing air service from major and smaller cities to regional airports. They 
, ' , 

would also contribute to the achievement of a more balanced total transportation system 

by providing direct links between smaller cities and major: cities and between nearby 

major cities. 

, In order for sU,ch a VTOL short-haul system to be economically feasibl~, the 

aircraft ~~st p~ovide schedulerelability in all-weather conditions, m,ust provid.e accep~-
. . 

able levels of ride quality, and must be operated directly into the city centers to provide .. . .' . . . 

the requisite convenience to passengers. Before a viable VTOL system can become a 
. , . . 

reality, technology developments are needed in a number of areas. During the past 

several years many advanced VTOL aircraft design programs have been carried out by 

NASA,: DOD and the' ~i;craft industry to develop economical vehicles with improved 

ride qualitie~ and controllability which would be' suitable for a commercial VTOL tra~s-
" , 

portation system. However, to effectively utilize these vehicles and to exploit their 
". 

unique characte~istics for minimizing noise and both air and ground space requirements, 

corresponding advan~~s must bemade i~ handling qualities, operating procedures, and 

all-weather avionics •. 

The NASA Lang ley Research Center (LaRC) has undertaken a research program 

to develop the navigation, guidance, control, display and flight management tech-

. nology base needed by Government and industry in establishing systems design con-
, 

cepts. and operating procedures for VTOL short-haul transportation systems' in the 1980s 
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time period and beyond. The VALT (~TOLAutomatic .banding lechnology) Program 

encompasses the investigation of operating syste~'TlS and piloting techniques associated 

with VTOL operations under all-weather conditions from downtown vertiports; the 

investigation of terminal air tr~ffic and airspace requirements; and the d~velopment 
"" " 

of avionics including navigation, guidance, controls, and displays for automated 

takeoff, cruis"e, and landi~g oper~tions. 

In support of the VALT Program, Aerospace Systems, Inc. (ASI) has conducted 
-•• ', ",' ., • pO. • • • • 

a number of research studies for LaRC, which provide a technology base for the present 
: '. . . : 

study. In the initial effort (Reference 1), ASI analyzed the navigation and guidance 

requirements for commercial VTOL operations in the takeoff, cruise, terminal area, 

and la~dfng pha'ses of flight in wea'ther condi'tions up t~ and includingC~'tegory III. 

A digital co~pute'~ simulati~n'('Progra~VAL T) was de~eloped\o provide ~~~a~s' for 

~valuating' th~ pe~formance of ~andidate VTOL guid~nce '~nd control systems. "ihis 
'. ,. '.' , . . .. .. 

program was use'd to 'conduct a sens'itivity study of several v'rOL guidance and control 

system concepts (Reference 2). 

,On~, conclu~ion in ,Reference 1 was that curved decelerating approaches will 

be required for safe, efficient, and independent VTOL operations. To facilitate these 
, . ' . t 

maneuvers" a spiral descent technique was formulated as a possible standard VTOL 
" '. - . '.. 

approach procedure. The spiral desc,ent investigated by ASI in Reference 3 uses minimal 
. . :. '.' . . ." .. . ' .~ .' 

"airspac~, accommodates arrivals from any ,direction, and can service multipad landings. 
:. . . .,;' . . 

The spiral approach also provides the benefits of a vertical descent, but avoids the 

vortex ring state, maintains a stable airspeed, and uses less fuel • 

. The guidan~e of a VTOL along this type of spiral descent trajectory is compli-
, , 

cated by many control problems" which are unique to this class of aircraft. To reduce the 
. : . . 

workload for the guidance and control tasks to a tolerable level for multiple daily land

ings, the aircraft controls will be partially or completely automated ~ As the level of 
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automation increases, the pilot's role shifts from primarily that of ci controller towards 

that of a system monitor and manager. The purpose of the present study was to examine 

which tasks should be allocated to the pilot of an automated VTOL aircraft utilized as 

part of a short-haul air transportation system and to determine what displayed information 

will b;e required in performing these tasks. 

, ' 

Whi Ie the study was intended to provide insight into problems associated with 
, , 

VTOL pilot tasks in an automated VTOL aircraft in general, several guidelines were 
. . . . . 

specified by NASA to provide a frame of reference and to ensure that the results could 

be readily used and evaluated in VAL T and other existing Langley Research Center 

programs. These g~idelines included the following: 

• 

• 

• 

• 

• 

Flight Profile - The emphasis of the study was to be on the approach 
and landing phase offlight; however, sufficient general consideration 
to the takeoff and enroute phases of flight was to be included to ensure 
that the study'results would be compatible with the overall' task of 
operating. the vehicle as a commercial transport. 

Vehicle Dynamics - The study was to utilize the CH-46C and CH-47 
helicopters' used in the LaRC flig~t research programs. " 

Crew - Crew tasks were to be configured to perm it operation by one 
pilot. Routine calls, communication channel selection, or other , 
tasks which might be handled by a second crew member in an opera
tional context were not included in the scope of work • 

Pilot Involvement - The levels of automation considered were to be 
varied over a range extending from a fully automatic system with the 
pilot in a passive mode with respect to control activity to a system 
with full manual control. 

Technology Date - In defining a level of system automation, allocatinp 
tasks to automatic systems, and in conceiving displays for the control; 
display concept, decisions were to be based on the relevant technology 
projected as being available in the mid 1980s. 

Pilot/Hardware Experiments - Hardware tests, flight tests, and pilot/ 
hardware interaction experiments were to be specifically excluded 
from the scope ,of the work. 
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Some prel iminary results obtained during the present study were' inCluded 'in' 

a paper presented by the principal investigators in Reference 4. This report'inchides'a: 

complete descri ption of.the work performed and the results obtained during' the investi

I, gation. ,Section.2 discusses the VTOL display/control methodology'used, including a 

description of the model developed for simultaneous monitoring and control. Section 3 

includes a discussion of the logic used for the choice of control systems, a description 
\ (~ 

of the diffe~e~t levels of automation investigated, and the m~els thC!t were fC?rmulated,. 
, , 

The different approaches for pilot monitoring performance prediction and choices of 

mo~itoring workload performance metrics are examined in Section 4. Section 5 pre-
. ". ~ 

sents the model validation analysis results which uti lize data obtained by f':IASA during 

CH-46C helicopter flight tests. Results obtained for eight CH-47 levels of control 

auto~ation are pr~~'ented 'in Sedic:>n6., In Se~tion '7 a CH-47 displ~y concept and format 
.. ",' ~ J :" . • ." 

is'presented. ,Cor-elusiqns and::rec::o.ri'Hpen~ations,' are given in Sectio~s 8 and 9 respectively, 

followed by a List of References a~d a S'lbliOgraphy'. The ApPendices contain detailed 

technical informa,tion (:;onc~rQi~g the ,equation~ for th'e ,optimal control model for the 

human operato.r, attentional, ~lIocation using the optimal control model, and CH-46C 

and, CH:'47 ~irc~aft,~haracte~fstics used in the,study • 
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" SECTION'2 

VTOL DISPLAY/CONTROL DESIGN METHODOLOGY 

The pilotls functions throughout the entire flight of a VTOL aircraft can be 

~roadly classified in the two areas of (1) control and (2) mO,"!itoring; both of these func

tions are ,necessary for safe and efficient operations. This study has addressed itself to 

the development of a pilot/vehicle model for simultaneous monitoring and control in 

order to explore the display/control tradeoffs inherent in the seledion of a display and 

control system for an automated VTOL aircraft. The advantage of using the model in 

the preliminary stages is that a wide variety of candidate systems can be explored with 

9 minimal amount of effort and cost. The detailed man-in-the-Ioop simulations can'and 

should be reserved to resolve the minor details between competing display/control sys

tems and to, confirm the. predi ctions of ,the model •. 

Regardless o'f the form of the model used to carry out the display/control 

design, it is imperativE! that this model have realistic and quantitative metrics for the 

following: 

• System control performance' 

• Workload for control 

• Monitoring performance 

• Workload for monitoring 

Without measures for these .four quantities, one would beunable to explore the many 

and varied tradeoffs between control, monitorin~, augmentat~on ~ystems and displays. 

2.1 A MODEL FOR SIMULTANEOUS MONITORING AND CONTROL 

This section briefly outl ines a model for simultaneous monitoring and control 

which is used in the design methodology outlined in Subsection 2.2. This model is: based 
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on the optimal control model of the human .operator (References 5 and 6), which is 

described in more detail in Appendix A. 

where 

The performance metric for the control task is given by 

n 

J c =2: 
i=l 

2 2 a/x. .. x. .. max 
I 

J c' =. performance rnet~ic. for.control 

a. = ~.standard deviation for x. Xi . . ; ' I 
I 

;th 
x. = I component of state vector x 

I 

(2-1) 

, Equation (2-1) is a relative weighting .of the variances of the individual components of 

the state vec.tor norma/i~ed by their maximum allowable excursions. When evaluating 

competing systems, one may use a subset of the state vector components; this is . 

eq!Jiva/ent to assuming that some compon~nts have infinite allowable deviations. 
\. . . -""'. . ... -: - .., , ' 

The workJoad metric fo~ conJrol is based on the task-:interference model of 

Reference 7. This metric states that for a single display element, the covariance-of

the observation noise at the input to the pilot model (see Appendix A)is given by 

v y. 
I 

2 = p. (j 

I Yi 
(2-2) 

where the noise-to-signal ratio p. is approximately 0.01, and y. is the jth displayed 
I I 

variable. When the pilot "devotes' only a part of his attention to anyone display 

element, then the observation noise can' be modelled as 

v = 
Yi 

2 
p. a 

I Yi 

f c. 
I 

2-2 
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where fc • is the fraction of attention allocated to the ith display. This observation 
1 

noise has the appropriate limiting values: if fc . = 1, then-Equation (2-3) reduces to 
1 

the full-attention results,' Equation (2-2); when the controller is not using the ith 

display, then, fc • = 0, and the observation noise is infinite, corresponding to no 
1 

observations at all. The fractions of attention fc• must all be positive and sum to the 
1 

total fraction of attention being used for control,. Thus 'the control workload metric is 

given by 

f c. ~ o. (2-4) 
, 1 

The pilot al locates his attention between the displays, spending the larger 

fractions of attentions on displays which are most useful for control. This behavior, is 

formulated in the model by the assumption that the pilot minimizes a quadratic per

formance index with respect to the fc • subject to the constraints of Equation (2-4), i.e., 

. min J =. min E 
(f) (f) c. c. 

1 ' I' 

1 

T 

l I'im .!. 'J tT_ oo T 
o 

(2-5) 

where Q and Q are positive semidefinite'weighting m"atrices. Since th'e 'per'fo~mance 
x r 

index in Equation (2-5) can be evaluated for any specifiC values of fc • in Equation 
, . 1 

(2-3), it is conceptually a simple problem to further minimize this cost function subject 

to the constraints of Equation (2-4) .• Appendix B contains details of the associated 

equations and the techniques for performing this minimization. , 

The basic form of the model for simultaneous monitoring and control can now 

be described. For a given leyel of control t,ask workl~ad, fc' the pilot '!ViII ~lIocate 

his attenHon as described by Equation (2-5) to minimize the performance index. This 

is first in the hierarchy of control and monitoring, i.e., the pilot will first attend to 
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the ~or;ttrol task, and with any available attention remaining,. will then-attend to the 

monitoring task. Thus the 'control task workload metric of Equation .(2-4)ahd the 

control 'task performance metric of Equation (2-1) .can be used to draw the, control' 

performance/workload tradeoff curve. At any given level of system performance (or 

workload), the pi,lot will have some residual capacity or, fraction of attention after -' 

atten'ding to the control task. We assume a total fraction 'of. attention of 0.8 should' 

be allocated to both the control and monitoring tasks: e.g., if the control task 

requires a fraction of attention of 0.3, a fraction of attention of 0.5 is available for 

monitoring; similarly, if the control task requires f = 0.7, 'then only 0.1 fraction of 

attention is available for monitoring. Thus the control task workload metric and the 
: .', 

monitoring task workload metric obey the constraint given in Equatior) (2-6). 

(2-6) 

2.2 THE OPTIMAL CONTROL MODEL OF THE PILOT AT THREE LEVELS 

This section inc,ludes a descript~on of the' development and use of the 

optimal control model of the pilot which was refined during the course of this study. 

The model can be exercised at three Jevels of detail. These levels have been termed 
,". ~ '. "; .' . . " . '.' . . '.-

the "information level, II the "display element level," and the "display for,mat level. II 
',; ." . ',-' ,. ," . " 

Each of these levels and the use of the model in these levels will now be briefly 
. :.' . - . ~ . ." , . .. . . ". . . ~ . 

descr:ibed. 

2.2.1 INFORMATION LEVEL 

'At this levelof op~ratiori', 'each o(th'e e'lemen'ts of the'state vect~r is 

assumed tobe- obs~rvabie by the pi lot. Each ~(these' "observations" is assigri~d 'its own 

, fra~ti~n of attention for control, and' the 'ciptimizatio~ 'of th~ perform'ance index, 

Equation (2-5), is carried out for 'Zt'orious levels of ~o~trof task workload"fc • "This 
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procedure leads to a very simple way of determining the information requirements for 

the task, since those state variables of greater importance will receive ,the, greater 

amount of attention. 

2.2.2 DISPLAY ELEMENT LEVEL 

- The display element level is perhaps the most common level of operation for 

the optimal control model; each of the diSplayed quantities is assumed to be indicated 
" " 

by a display "element." The inputs to the model in this configuration are the position 

of the display element and its rate of change. Each of the display elements is assigned 

a given le,vel of attention, so that the observation noise for both the display element 

position and display element rate are assigned the same fraction of attention for 

control, fc .• Attention allocation is found by minimizing Equation (2-5). 
I 

2.2.3 DISPLAY FORMAT LEVEL 

This level of use of the pilot mO,del is very similar to the:display element 

level described,above. However, in this'case specific characteristics of the display 

format such as indifference thresholds, Ic:ick of a zero reference, saturation limits, 

smoothing filters for display augmentation, etc.,' ~re incorporated into the model. 

The details of the use of the model at these three levels are explained in 

the next section on display/control"system design methodology. 

2.3 VTOL DISPLAY/CONTROL DESIGN PROCEDURE 

_- The VTOL display/control design procedure 'developed cmd utilized in the 

study- is a ten-step process. These ten steps can be broken down into four main 

categories: information requirements, control/monitor performance, pilot/automatic 

- task allocation, and display format design. The 'ten steps, outlined in Table 2-1, are 

discussed in detail below. 

2-5 

AEROSPACE SYSTEMS. INC •• ONE VINE BROOK PARK • BUR'LINGTON. MASSACHUSETTS 01803 • (S17)272-7e17 



'l!::-~ Ta~le2-J. ,VTQL.Display/Control Design Procedure.,,· 

. 'CATEG0RY , STEP, , , , 

1. Determine max x. and max J from' 
I c 

mission requirements. 

2. 
Information 

Sel ect candidate control systems. 

'Requ i reme nts . , 3 • Calculate -J vs. f 'at the information c c 
, . :., level for each control syste~ {include 

steering commands}. 

4 • Choa;e display elements. 
.... , .. 

- .. 5~ Calculate J vs. f' at the display c c 

Control/Moni tor '. elemen~ level for each display/control 

Performance system. 
, .. -. 

6. Determine fm = fTOT - fc and Jm from 

monitoring model. 

p iI ot/ Automa ti c 7. ,. Select display/control system Task Allocation -
configuration. 

'. , ' 

8. Select display format candidates. 

~ ~: .'. Display Format .. 9. Det~rmine Jc ' J m ~"s. fc' for each 
Design display format. 

10. Select display format. 
, 

Step 1. Determine max Xi and max Jc from mission requirements. 

The maximull2 deviations;.of~ state vector compon~nts are selected from the 

mission requirements, pil~t acceptanc~ criteria,. and passenger acceptance criteria. 

These maximum values of x. are used to determine the coefficients in the quadratic 
I . 

. cost functio!,!al. The m<;lximurT! of the overall figure of merit of. the system control . 

performance, max J , is a function of the upper limit of the maximum acceptable c 

2 -.6 
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error variances which are determined by the mission requirements; i.e., for a given 
. . . . 

trajectory and attitude tolerance, there is a value of J which must not be exceeded c ' 

for any syste~ t~ be considered viable. For examplei if the Ix. I values are 
, I, max , 

exceeded with probability of 0.05, then Ix. I ~ay be interpreted as tw'ice the 
. I" max 

maximum standard deviation under the Gaussian assumption. I f each of the variances 

is at its maximum (a worst case design), then J ,is n/4, where n is the number of ,c, max, ' , 

ter~s i,n Equation (2-1). 

Step 2: Select candidate control systems. ' 

The candidate control systems which utilize different levels of augmentation 

are selected and designed. The output of this step of the proced~re is a 'setof 
. . . . 

controlled-element dynamics which interact with the pilot. These levels of automa-
. . . . 

Hon may cover the complete spectrum from the raw unaugmented vehicle through 
, ' , 

complete position feedback, i.e., a fully automatic system. The details of the 

control system design procedures used for this study are described in Section 3. 

Step 3: Calculate Jc vs,. fc at the information level for each control system. 

This is the key step in determining information requirements for the candidate 

control 'systems. Each element of the state vector of the system is considered as a 

measurement', wi th its own frac'tion of attention for control, i. e., the display element 

and its rate are treated independently. For a given level of control attention fc " :the 

performance index is minimized subject to the constraint of Equation (2-4), 

""f =f L.J c. c' 
I 

f ~ O. c. 
I 

Included in the displayed information should be director/steering commands designed 

for each particular level of automation. (See Section 3 for the descriptionofthe 
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flight director design used in this study.) The specified level of ~ontrol fraction of 

attention, f '. does not carry the same meaning as it does when operating at the display 
. .', .'. c,' " , . . '.' .,' . 

element level of the model. However, when i is varied from 0 to the number of 

states, f. provides the relative importance of each of the states. These in turn are 
, I· " " .' 

used as input to the next step of the d~sign procedure. 
-' ' 

.. Step 4: Choose display elements.' 

At this stage of the design procedure, the information requirements deri'ved 

in the previous step are used to choo~e display elements" The most difficult part of 

this step is determining whether or not a separate display of rate is required for use by 
-. . . - - '-,", .' . 

the pilot. For the pitch attitude display element, pitch ~nd pitch rate are used as 
' .. (.:, 

inputs to the optimal control model of the pilot; the same is true for altitude and 
! .: • 

. ",' ~ ! l 

altitude rate. However, it is empirically known that separate displays of pitch attitude 
~ , ~,' 

and rate are not required, while a separate display of altitude rate is required. These 
.' • 1. ~ • .... j ." : ~ . . . .• • _, '. ,. 

differences are due to the accuracy with which the rate may be inferred from a position . ~. ; . ~ .' 

display; for pitch attitude, pitch rate may be discerned to sufficient accuracy from the 

, indicator, whereas this is not true for'the' altitude indicator. ,Th is is due to the inherent 
. _, . .," '.. _, ,.. . .•. . t.... . . .. , 

d~.I.aY.,!n the bqrom,~tric .altitud,e. i~di.cation an,d,the ~ynar:nic range 9f the displayed 

signal. New types of altimeter.syste!l1s al1d displc::lYs mediate, this sqmewhat, but ex-, .. - ~ .'. . . 

plic,it yerttca,l, sp~ed information is still used in ,the ~aiority of conve,ntionc::llinstrument 
. f.. . ~ .' . • . ". ' 

parlels • .: : 

The decision 'of whetlier or not to ·inClude a separate"rate display can be 

inferred from the information level results of the previous step by examining the 

required accuracy of display • 

.... ,'-

, 
'. 
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. Step 5: Calculate Jc vs fc at the display element level for each display/ 

control system. 

This step is similar to Step 3, where the control performance metric, j , is c 

computed for different values of workload metric fc • This leads to curves of control 

performance vs. workload having the general shape shown in Figure 2-1. This curve is 

plotted for two systems, but in general there will be as many systems as there are levels 

of automation times the number of flight director options, i.e., if there were five 

levers of automation and two flight director options (with and without flight director), 

then there would be curves for ten competing display/control systems shown in Figure 

2-1. It should be noted that Figure 2-1 is the plot of the minimum value of J for a . c 

given fc ' i .e., th~ attention has been allocated to minimize the performance index. 

Thus additionaroutpyts of the model at this stage are the fractions of attention being 

spent on each of the display elements. To·prevent overly optimistic predictions of per

formance at this stage; indifference thresholds should be incorporated in the model cal

culations (see Appendix A), since this is a well-known facet of pilot behavior. (In the 

present study, x. /4 was used as a.representative value.) ., max' 

J' c 

T 
f f . c, req--+----- m, avail-----.....-----I 

~------------------------------------------+-~~_f fTOT ' 

Figure 2-1. System Control Performance Versus Workload. 
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This step is also shown in Figure 2-1, where the va'iue' of t~tal attention for 

,the control andmoni_toring task. (f
TOT

) is.specified. ~ince:the curves will be monotoni

cally de~reasing .(the more attention for control, .the better the job of control one can 

dc:»,. p I,i-ne has been drawn atth~ maximl:'m value of contr~1 ;p:erformanc~, Jc~ max" 

consistent with the ":lission requJrements •. The int~rs~ction:of thi.s line of cO,nstant ccm-. , , . ...... . 

trol perfor~ance, and th,e_ J c vs. f c cur:ve for ea.c~ ;of th.~, candi9~t~ systems determines 

the n:tinimum amount._.of control attention. required, f . • The difference betwee~ . ..... . . .' . c, req '. 

this .amount of attention, ,and the total available for. the ,entire task is the residual 
. '.' . .. . 

fraction of attention available, for monitoring f 01. 
< • , .' r m, aval 

, Thus of the fourimportdnt.metrics required' for the display/control design' 

process, three have been determined at this stage:: f.', J' ,. and f • The fraction of at-
c c m 

tention available for monitoring, is then applied to, the monitoring model (see Section 4 

. for a discusSion of the monitoririg models) •. Since the:monitoring performance will be 

monotonic with monitoring attention, one simple ·monitoring strategy is equal alloca'-

tion of attention to the monitoring instruments. 

Results of applying the monitoring model may be plotted as shown in Figure 

2-2. This shows the contours of constant monitoring performance in the control com

plexity-display complexity plane often used in discussions of the VTOl display/control 

design problem. Although curves of pilot workload are normally plotted in this plane, 
. . 

monitoring performance is an equivalent measure for our discussion. It should be noted 

that competing systems, which appear as'points in this plane, are being compared on , .' . ,. . . . . 

the basis of the same total workload and the same 'evel of system performance • 

. ! 
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Control 
Complexity 

Display 
Complexity 

Constant: 

(1) System Error 
(2) Total Workload 

Figure 2-2. Monitoring Performance in the Control-Display Plane. 

Perhaps a more meaningful presentation of the monitoring performance data 

is shown in Figure 2-3. This form of the data is easier to interpret when many tradeoffs 

are necessary during th,e system selection as described in the next step. 

, . 

Monitoring: 
Performance 

J 
m 

Display System 

Control System 

j~ 
, ' 

FD = Flight DiJ::ector 

Figure 2-3. Monitoring Performance for Candidate Systems Display/Control. 
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Step 7: Select display/control system configuration. 

Criteria for allocating the tasks between the pilot and the automatic system 

should be based on the following considerations ranked in order of importance. 

• Required workload level less than or equal to approximately 0.8 ' 

• Sensitivity of workload level to changes' in display control configuration 
system failure modes . 

• Sensitivity of performance to changes, in control and monitoring workload 

• Cost 

An approximate level of BO% workloa~ on which to base the next phase of 

design provides an adequate although not excessive, margin' for the more detdi'led design 

and analysis of the display format. The sensitivity of workload level to changes in dis

play and control configurations is important 'because it minimizes the "impact of model

ing errors orf the 'final decision and minor display or control mode changes will' not 

place excessive worklocid on' the' pilot,. A ''brief examination of systems failure modes 

is important during this part of the analysis because it provides an indication of 

whether or not the system can be controlled when either the display or the control 

sys~em fails. However, Figures 2-2 and 2-3 are calculated for accuracy requirements 

that may be too stringent during the failed condition. 

The first of the allocation criteria is satisfied by the conditions under which 
. ' 

the calculations were made, i .eo, Figu~es 2-2 and 2-3 have been obtained for a total 

workload level of O.B. The sensitivity to changes in display/control configurations 

can be determined by examining Figure ,2-3. For example, should System A be chosen 
" 

with the ftight dir~ctor 2 dis~lay 'oPtio~; (FD2), then under flight director failure a 

change of monitoring performance (while maintaining the control performance) is given 

by the difference in the values of Jm for FD2 and FDO conditions. Control system 

failures (while maintaining the same level of control performance) can be assessed by 
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examining the change from one configuration to another. For example,_ if the nominal 

system operates with the display of FD2 and control system C, then a failure in the 

control system will revert the control task back to that of control system A with 

no flight director. (It is assumed that the fl ight director mode must be turned off if 

there is a change in control systems because of the ~ifference in flight director gains 

for different control systems. That is, a flight director designedfor control system C 

may not be adequate, and may even lead to deleterious performance, when used with 

control system A.) 

Step 8: Select display format candidates. 

The display formats, which may be one of three types (separated displays, 

perspective displays, or combined displays) should be selected according to the follow

ing guidelines discussed in Sectio'n 7: 

• Operator centered and oriented 

• Geometri c "real world" compatibi lity 

• Naturalness (for high stress situations) 

• II Status at a glance" for situation displays 

• Predictive capability for situation displays 

-. Compactness 

• Lack of clutter 

In addition to -these interpretability considerations, operational guidelines should be 

used which include failure mode consideration (the ability to make missed approaches 

with a minimum of control and display augmentation), display options (such as change 

in scale), and flexibility and versatility in trajectory selection. Details of this 

procedure are described in Section 7. 
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, Step 9: Determine .Jc', Jm vs, fcfor each display format'. 

The basic'approach in evaluating the display format candidates is to perform 

the computations of Step 3 with a more detailed model and description to account for 

specific displaY formats and me~hanizatio·ns. In general, one should expect the perfor

mance to degrade somewhat'du~'to the pradical aspects of irripleme~ti~g the'infor~ation 

display. Fora given display candidate, one should include 'the effect of scaling,' 

thresholds, and a' zero 'reference Codack of one} by a; det~i1ed noise~va~iance '~odel. 

Note that if each of the format candidates is chosen to be consistent with the indiffer-

ence thresholds used in the calculations of Step 5, tht;!re should be only minor changes 
, ' 

in performance due to this effect. 

The specification of the observation noise vqrianc;:e model will take the form . ,., . . . " 

VO 

V (t) = ...2. ~K2 {o } ,+ 0'20 ] y. f y., • 
I I I c. 

(2-7) 

I 
, , 

where V is the observation noise covariance for the, ith input to the Kalman filter por-
Yi " .. . I" 

tion of the pilot model. V
O 

is the nomin!ll sole-task noise variance" and f is the y. ". ( . c. 
I . I 

control-task fraction of attention allocated to this display ~ariable. The quantity in 
.. ,. . 

the brackets is a detailed noise model that is a function of the particular display format 

being evaluated. Typically there are two effects as shown in Equation {2-7}0 

• K2 represents the describing function whi,ch predicts ,and accounts for 
noise variances due to thresh6lds/ saturations, and other nonlinearities 
of the display; , 

, , 

• o~ is a variance representing the ,effect of {or lack of} a zero reference 
I' . 

for t~e displ,ay. ~n other words if there is}'lo zero reference for the dis
play and the pilof has to judge the value of the displayed variable ' 
relative to the position in its total range of travel, then the observation 
noise of this variable will be greater than if he is provided a zero, or 
commanded reference. 
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A further change in the model should be the incorporation of realistic flight 

director computers; since these signals must be generated from noisy information, which 

often involves high-pass or differentiation of such data, requiring that the navigation 

data be filtered before presentation to the pilot to aVoid his rejection- on· the basis of 

noisy signals •. Thus, .one mu~t specify the dynamics of the adual flight director to be 

used in the computations at this stage. 

Using the more detailed model of the display format, one may again deter

mine system control performance J vs control task workload fc for ·the different dis-
c . 

play formats as shown in Figure 2-4. These curves are generated for several different 

formats of the display/control system selected in Step 7 and form the basis for making 

the final display format selection in the next step. In a manner similar to that of cal

culating the control performance Jc ' one should recalculate the monitoring performance 

metric J for every value of f , which is the residual of the fraction of attention after m m 

attending to the control task. 

Step 10: Select display format; 

The specific selection of the individual candidate displays should be based 

on the following criteria: 

• Workload level . 

• System performance 

• Monitoring performance 

• Sensitivity considerations 

• Adherence to display design principles 

• Operational considerations 
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,' .. 
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Figure 2:"4.· ''System Control Performance Versus Control Task WorkI6ad'~ 

Primary consideration should be given to system performance and control task work

load, since these two quantities are the ones for which the most empirical data exist •. 

Furthermore, the pilot will attend to his controHasksin a hierarchal ordering of 

flig~t con~ol (flight d,rector), tas~s and he will then attend to the monitoring tasks 

if there is available time. 

The specification of the system performance level will hav,e an impact on 

whether or not an automatic performance assessment and failure monitor needs to be in-

c1uded in the system for a given set of trajectory and wind conditions. If the system 

performance is fixed at a low enough level, then the amount of attention required to 

perform the control task f , will be close to the pilot's.ultimate capacity, hence little, 
c 

if any, margin is allowed for unexpected distractions,or for monitoring. If. these con-

ditions prevail then an automatic failure monitor and performance assessment system 

must be considered to accomplish these approaches with the desired degree of pilot 

acceptance. 
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SECTION 3 

DESIGN OF CANDIDATE CONTROL AND DISPLAY SYSTEMS 

Realistic helicopter control system models are required in conjunction with 

the analytic representations of the human pilot and the aircraft displays. In accordance 

with the study guidelines the control system models which were developed represented 

levels of automation that varied over a wide range extending from 1) a fully automatic 

system with the pilot in a passive mode with respect to control activity to 2) a system 

with full manual control. This section includes a description of the different levels of 

control automation investigated and the models that were formulated, and a discussion 

of the flight director design process that was followed. 

3.1 LEVELS OF CONTROL AUTOMATION 

The potential control system configurations can be classified in terms of 

1) the aircraftls three dynamic axes and 2) the outermost feedback loop closure. This 

can be seen in Figure 3-1 which shows the I evel of control automation for the pitch 

or roll channel. With the position feedback loop closed in a particular axis, the system 

is fully automatic and the pilot becomes simply a monitor for that axis. Completely 

automatic control would involve position feedback in all axes. For normal operation, 

the aircraft wou Id have a stabil ity augmentation system (SAS) with attitude rate feed-

back. However in the event of an SAS failure, the unaugmented configuration would 

exist. 

. The output of the control system in each case consists of the four actuator 

displacements that are used to control the unaugmented vehicle. These consist of 

6 = pitch control (elevator or differential collective) e 

6 = roll control (aileron or roll cyclic) a 
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6r = yaw control (rudder or yaw cyclic) 

6c = vertical control (collective) 

The input commands to the control system are to be selected. Since it may be desirabl~ 

to design different I evels of automation for each control channel, they were cons idered 

separately. 

For the pitch and roll channels there are four possible input levels for each 

as indicated in Figure 3-1. These are termed horizontal position commands, horizontal 

velocity commands, attitude commands and attitude rate commands, respectively. 

For the vertical channel there are only two input levels to be considered, 

since vertical translation acceleration is related directly to collective. For the yaw 

channel there are also only two input ievels to be considered because yaw motion is 

not directly coupled to translation as are pitch and roll. Yaw control at the attitude 

rate command level is usually implemented such that yaw rate is proportional to yaw 

control displacement. Yaw control at the attitude level is usually implemented in 

either a II Heading Hold ll or a IITurn Following ll mode. The former is used during low 

speed and hover. The.latter is used at higher speed to give coordinated turns. The . . 

II Heading Hold ll mode is implemented by commanding present heading so long as the. 

rudders are neutral. When the rudders are out of neutral, the commanded heading is 

changed at a rate proportional to yaw control displacement. The IITurn Following ll 

mode is usually implemented by nulling either the sideslip angle, ~, or y-axis specific 

force as measured by a body-mounted accelerometer. 

Considering the unaugmented actuator as an additional mode in each channel, 

there are three or five levels of automation possible in each of the control channels of 

the the helicopter (see Table 3-1). Thus the number of possible combinations is 

5 x 5 x 3 x 3 = 225. However, many of these combinations are not practical systems 
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Table 3-1. Levels of Control Automation •. 

Forward Verticol Lateral Directional 

.' 
, , 

5e 5c ' 5a 5r c c c c 

qc V Pc r 
z ·c 

c 

9c h ¢c Wc c 
• :1' 

V V 
; x Yc c 

x Yc c 

: . 

for normal operatio~s. A series of eight systems were selected to represent the full 
. ! ~ .' .' ". 

range of automation for the CH-47 helicopter ranging from purely manual with direct, 
• '. 4- .' \ : • • '-. ' I . . 

actuator commands to full position control. These are shown in Table 3-2. 
~ ," . . . 

Table 3-2. CH-47 Automation Levels. 

Control Channel Command 

System 
Pitch or 

Vertical 
Roll or Yaw or 

Forward Lateral Directional 

A 6e 5c 5a 6r 

B q 6 P r 
c 

C 9 6 ¢ r 
9 

D 9 V z ¢ r 

E '9 V z ¢ 1/1 

F 9 h ¢ 1/1 

G V h V 1/1 x Y 

H x h Y ~1 
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3.2 UNCOUPLED CONTROL SYSTEM MODELS 

This subsection discusses the approximate closed-loop dynamic response of 

the cantrol system for each control channel. The intent is to provide an understanding 

of the design objectives for each level of automation and their overall hierarchy. 

Subsection 3.3 will present the unified design approach for the coupled systems using 

the vehicle dynamics models. 

3.2.1 PITCH AND ROLL CHANN EL MODELS 

The pitch and roll channels can be made to respond similarly in the low speed 

or hover mode. In the high speed mode air speed is substituted for forward ground 

velocity at the velocity command level and heading rate is substituted for lateral ground 

velocity. The switch from hover mode to high speed mode presents several complex 

design choices. For simplicity it will be assumed that those switches are accompl ished 

manually by the pilot at an airspeed between 40 and 80 knots. 

The pitch or roll attitude rate model is shown in Figure 3-2. The vehicle 

response to a pitch or roll rate command (q or ¢ ) is approximately that of a first-order c c 

system: 

T S + 1 
q 

(3-1) 

where the time constant T is typically about 0.5 second. The maximum pitch or roll 
q 

rate for the CH-47 has been specified by NASA at 25 deg/sec; treating this as a step 

input to Equation (3-1), the maximum pitch or roll acceleration is 

• I. 2 V 2 q = 50 deg,sec = 0.87 rad sec • 
max 
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. 

1 IC">. 
q -- ~ '< >' -- Tq S 

q 

Figure 3-2. Pitch or Roll Attitude Rate Model. 

o Figure 3-3 shows the approximate model for pitch or roll attitude control. 

This system merely involves the addition of a pitch or roll attitude feedback loop around 

the attitude rate model. The closed-loop model response is second-order: 

e - (3-2) 
2 2 

s + 2, w s + IJJ n n 

wi th a natural frequency w 
2 = Ke/ T and damping ratio C = 1/2 ~ Ke'T' • For a 
n q q 

typical system gain Ke - 0.5 - 1.0 sec -1, the response has nearly critical damping 

(, = 0.7 - 1.0) with a natural frequency w = 1.0 - 01.4 rad/sec. . n 

r------------------------, 
I I 
I I 

qc: + . q : 

i 
T.q S I 

, -_ i 
s 

L------- _________________ J 

Figure 3-3. Pitch or Roll Attitude Model. 
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The next level in low speed pitch and roll automation is the horizontal 

velocity control model shown in Figure 3-4. Again, this system essentially involves 

an outer feedback loop around the pitch or roll attitude control system of Figure 3-3. 

The pilot input Yc is compared with tl:le measured velocity Y to generate a commanded 

pitch or roll attitude; Y provides a trim capabi I ity. The closed-loop transfer func-cref 
tion, using Equation (3-2) for the inner attitude loop, is third order: 

Y 
= 

2 
gKyWn 

(3-3) 

This can be simplified at frequencies below w by approximating a/a - 1, which 
n c 

results in the closed-loop response 

(3-4) 

where,. Y = l/g Ky. If we select a gain of Ky - 0.9 deg/ft/5ec, the time constant 

becomes ,.y - 2 sec. 

YCref 

I 
.~ 

, + 

l 

+ 
yc--®-- Ky 

9c 
. 

e (s) e Y 1 
1----.- g -

e (5) 5 
C 

Figure 3-4. Horizontal Yelocity Model - Hover Mode. 
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The highest level of automation in the horizontal channels at low speed is 

the hover position model, shown in Figure 3-5. The position feedback loop is closed 

around the velocity control model of Figure 3-4; changes to the reference hover position' 

x are fed forward through a 'differentiating network to generate the reference velocity 
c 

signal. The closed-loop response of this'system is 

x 
:::: 

s/Ky + 1 
(3-5) 

Selecting the position gain at K - 0.25 ft/sec/ft, gives a critically damped system 
x 

(C .... 0.7) with a natural frequen~y ofw
n

'" 0.35 rad/sec. 

In the higher speed fl ight regime, the on Iy change in the pitch channel 

models is that forward ground speed Y is replaced by airspeed as shown in Figl,Jre 3-6. 

The roll channel in the high speed mode is used to control heading rate, as discussed in 

the next subsection. 

3.2.2 YAW CHANNEL MODELS 

At low speed, the yaw channel is in a heading hold mode, as shown in Figure 

3-7. The closed-loop response is given by 

(3-6) 

We s 
2 

+ s/ T W + K w T ~ 

Typical values are K W ,.. 2 sec and T ~ ,., 0.5 sec, which result in a critically damped 

system (c:::: 0.7) with a natural frequency wn - 1.4 rad/sec. The maximum yaw rate 
. 

command is about ~c ,.. ± 25 deg/sec. 
max 

At high speed, the yaw and roll channels operate in a turn following mode 

with heading rate control, as shown in Figures 3-8 and 3-9. Normally, there is no 
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Figure 3-5. Horizontal Position Model - Hover Mode. 

, + 1 
.~ -

- TyS 
v c -v 

Figure 3-6. Airspeed Control Model - High Speed Mode. 

, 
t--~-- - 5 r--r- - • 

Figure 3-7. Heading Hold Model - Hover Mode. 
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Figure 3';'8. Turn Following Model - High Speed Mode • 

. . 
Wc+1O\ 1 

. 
¢c ¢ 1 ~ g 

K¢ _v T S + 1 - -
p s V 

Figure 3-9. Heading Rate Model - High Speed Mode. 

command input to Figure 3':'8, and the system maintai~s zero sideslip. If the pilot wants 

to slip the'vehicle, the input is proportional to sideslip velocity, RV, with a maximum 

value of approximately 60 ft/sec. The closed-loop sideslip response is 

(3-7) 
2 

s + s/,. ~ + K ~ V 

'~'Typical parameter values are K~ ,., 0.004 rad/sec/ft, and ,.~- 1.4 sec. The resulting 

dynamics depend on airspeed, as shown by the following: 
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V 

60 kt 

120 kt 

tl) 
n 

0.6 rod/sec 

0.9 rad/sec 

C 

0.6 

0.4 

The heading rate loop in Figure 3-9 is nearly identical to the roll attitude 

model in Figure 3-3, since yaw rate is proportional to roll attitude at a given airspeed. 

The closed-loop dynamics are the same as Equation (3-2), except the natural frequency 

w2 = gK /VT and damping of C=I/(2T w ). For T - 0.5 sec and K~ - 5 sec -1, the 
n rtf p . p n P Y' 

resulting dynamics are also functions of airspeed: 

3.2.3 

'V 

60 kt 

120 kt 

1.8 rad/sec 

1.3 rod/sec 

VERTICAL CHANNEL MODELS 

0.6 . 

0.8 

The vertical speed model is a simple first-order response, as shown in 

Figure 3-10, with a time constant of Th - 2.5 sec. The maximum input is of the order 
. 

. of he - 16 ft/sec, which limits the vertical acceleration response to abQut 0.1 9 
max 

(3 ft/sec). 

. . 
+10. 1 h 1 

~ - -- T~ S 
h 

Figure 3-10. AI titude Rate Model. 
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The altitude hold model merely adds an outer loop around the altitcde rate 

model, as shown in Figure 3-11.· The clo.sed-Ioop response is second-order: 

h 

h 
= (3-8) 

c 

Selecting the gain Kh ,.. 0.2 sec -1 gives a damping of , ... 0.7 with a natural frequency 

of w ... 0.25 rad/sec. n 

.3.2.4 BANDWIDTH SUMMARY 

The bandwidths of the uncoupled models in the various modes discussed 

previously are summarized in Table 3-3. 

. 
h c--

+ h h 

+-- K:h 
c 1 1 -

Ths:t- 1 s 

Figure 3-11. AI titude Hold Model. 

Table 3-3. Approximate Bandwidth of Uncoupled Control Model Responses. 

Channel Mode Rad/Sec 

Horizontal Attitude Rate 2.0 
Attitude 1.0 - 1.4 
Velocity 0.5 
Position 0.35 

Yaw Turn Following 0.6@60kt 
0.9 @ 120 kt 

Heading Rate 1.8 @ 60 kt 
1.3 @ 120 kt 

Heading Hold 1.4 

Vertical Velocity 0.4 
Position 0.25 
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3.3 CONTROL SYSTEM DESIGN USING QUADRATIC SYNTHESIS 

This section discusses the design of control systems for the CH-47 which 

minimizes cross coupling between controlled axes. From a theoretical viewpoint it can 

be shown that there are insufficient degrees of freedom available to completely elimi

nateall cross coupling. The problem then is to use the available degrees of freedom in 

some optimum manner while constraining the direct control to respond with dynamics 

previously determined to be desirable. 

In this analysis the control was found using quadratic synthesis. The cost 

function was established by using those weightings on the state variables that would 

produce the model response in each channel if it were uncoupled. The control deter~. 

mined will automatically suppress the cross coupling in the optimum manner for the cost 

function selected. Using quadratic synthesis the co·st function was determined by the 

maximum acceptable magnitudes of the control and'state variables. The maximum 

values of available control are known for the vehicle, while the maximum values for the 

state disturbances are determined indirectly. The ratio of the maximum value of control 

and state in a direct channel is directly related to the bandwidth that results for that 

channel. Since the desired bandwidth has been determined for all the direct channels, 

these numbers can be used to generate the maximum values for each state variable. The 

philosophy used was that every control system is optimum for some cost function. The 

cost function for which the optimum control is the same control desired in each direct 

channel assuming no cross coupling is first obtained; then the same cost function is used 

to optimize the coupled system. 

3.3.1 QUADRATIC SYNTHESIS SUMMARY 

The steady-state quadratic synthesis design procedure provides a convenient 

method for determining the feedback low to minimize the control performance index 
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J = lco (x'Ax + u'Bu) dt 

o , 
(3-9) 

where x is' the plant state vector and u is the input vector • The diagonal :weighting 

matrices A and B are'd~terri,ined from the maximum desirable variations in the states 

and controls, 'i .e.; 

A .. = 1/(x. )2 
II I 

(3-10) 
max 

'2 
B.. = 1/(u. ) 

II ,I. 
max 

(3-11) 
, , 

Th~ Ii~ear syst~m dynamics are given by the standard form 

";- . 
x = Fx + G(u + u ) 

, ' p 
(3-12) 

where up is the :additional input from the pilot ~ The feedback control law is 

'u = -K x' (3-13) 

" 
where the feedback gain matrix is given by 

·"1 .~ • 

(3~ 14)-

The symmetric matrix S is the steady-state solution to the Ricatti eq:ucition 

(3-15) 

The closed~loop system dynamics are found from substituting Equa~ion (3~13) 

into EquCltion (3-12): 

x = (F - GK)x + G u 
p 

= F*x + G u p 

where F* = (F - GK) is the closed-loop system matrix. 
: .~. " . . 
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Occasionally, it will be useful to consider one or more of the pilot inputs as 

a commanded value for an element of the state vector. For example, if it is desired 

that pilot input u correspond to direct control of state variable x., we can use p. I 
. I 

Equation (3-13) to obtain the transformation 

u = -K .. x. 
Pi 'I I 

(3-17) 

3.3.2 UNCOUPLED EXAMPLES 

Several simple uncoupled examples are presented briefly to illustrate the 

design procedure and the relationship of the desired system bandwidth •. 

3.3.2.1 PITCH RATE CONTROLLER 

Consider the quadratic synthesis design of the pitch rate controller shown in 

Figure 3-12. 

+ . 
~" K 

q 1 
~ -- s 

q 

Figure 3-12. Pitch Rate Controller. 

The open-loop system is defined by 

x = q, u = q, F = 0, G = 

The performance index weightings are scalars: 

A = 

The feedback control gain is 
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where S, the Ricatti solution is easily found 

s = 

Hence, 

or 

In this first-order system the system bandwidth is directly re,lated to the ratio 

qrr/qm. Thus, if qm is known from physical constraints, the desired bandwidth can be 

achieved by properly selecting q in the design process. 
m 

3.3.2.2 PITCH ATTITUDE CONTROLLER 

The same technique is applied to the pitch attitude con tro J/er shown in Figure3-13. 

qc 

1 
q ~~ 

1 11 1 ec 1 I K2 I ;1-1 
K1 _9 

s 5 

Figure 3-13. Pitch Controller. 

The natural frequency and damping of this system are 
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The state vector and the open loop control are 

and the system matrices are 

G = [] 

The performance index weightings are 

where Ct m' qm' em are the maximum permissible values of pitch acceleration, rate, 

and attitude, respectively. 

The quadratic synthesis feedback controller is 

u = -{] 

where K = [ K K J = [ K 
q 9 1 

The Ricatti equation for this system can be solved explicitly to find the 

feedback ga i ns 

Thus the quadratic synthesis design leads to the following dynamic response 
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c= ~2/2 = 0.7 

Therefore, the only parameter needed to design the system using quadratic 

synthesis is the ratio q Ie = w2• If a cost had been specified on q as well as e, nT'm n 

only the damping in the system would have changed; the bandwidth would still be 

determined by q,/em• 

3.3.2.3 HORIZONTAL VELOCITY CON TROLLER 

As a final example, consider the horizontal velocity controller designed 

using quadratic synthesis (Figure 3-14). 

. 

+~ . K 
;,... 1 

V 

r--r~ g .-
s 

Figure 3-14. Horizontal Velocity Controller. 

The open-loop system is defined by 

x = [:J ' u = [~ 
0 

~] m q , F = 0 ,G = 

The performance index weights are 

[Vv! 0 

~] A = 0 0 B = 1/t·2 qm 
0 0 
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The feedback controller is 

Solving,the Ricatti equation to obtain K
V

' gives 

which could have been deduced intuitively. It is not necessary to solve for the other 

terms since we have sufficient information to determine the qrr/V m ratio. 

There is now sufficient information to use the quadratic synthesis technique 

to determine the feedback control for the coupled equations. 

3.3.3 COUPLED LONGITUDINAL CONTROL 

For the coupled longitudinal helicopter control system design, the state and 

control vectors are defined by 

x 

z 

e 

= V x x 

V z 

q 

u = [::J 

forward position 

vertical position 

pitch angle 

forward velocity 

vertical velocity 

pitch rate 

differential collective input 

gang collective ,input 

(3-18) 

(3-19) 

,The system matrices F and G describing the kinematic and aerodynamic response of the 

rotorcraft are developed in Appendix B. Numerical values of the CH-47 stabil ity 

derivatives for various flight conditions are presented in Appendix E. 
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The control weighting matrix in the performance index is 

(3-20) 

The control input limits oe and Oc can be determined approximately for each 
max max 

flight condition from the constraints on vehicle angular and vertical accelerati9ns 

°e 
.... qmax 

Mo /1 max 
e yy 

(3-21 ) 

w 

°c 
max ... 

max Z5/m 
c 

(3-22) 
\ 

where Mo /1 and Z /m are the stability derivatives explaining pitching acceleration 
e yy °c 

due to 0 and vertical acceleration due to 0 , respectively. From the models in e c 

Subsection 3.2, ~ypical limits on the accelerations were found to be 

. V 2 q - 0.87 rod sec max 

. / 2 w - 3 ft sec max 

The state weighting matrix A takes on different forms d~pending on the level 

of automation, as shown by the following examples. 
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• Pitch Rate dnd VedicCiI Velodty CommClnd 

0 0 0 0 0 0 

0 0 0 0 0 0 

0 0 0 0 0 0 

A = 0 0 0 0 0 0 

0 0 0 0 V -2 0 z max 

0 0 0 0 0 -2 
qmax 

• Pitch Attitude and Vertical Velocity Command 

0 0 0 0 0 0 

0 0 0 0 0 0 

0 0 -2 0 0 0 A = Amax 

0 0 0 0 0 0 

0 0 0 0 -2 0 V 
zmax 

0 0 0 0 0 0 

• Forward Velocity and Vertical Position Command 

0 0 0 0 0 0 

0 h-2 0 0 0 0 max 

A = 0 0 0 0 0 0 

0 0 0 V-2 
xmax 

0 0 

0 0 0 0 0 0 

0 0 0 0 0 0 

The maximum values of the states to be used in the "A" weighting matrix can 

-be determined from the uncoupled model bandwidths in Table 3-3, and the acceleration 

limits described above: For the horizontal channel of the CH-47: 
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qma/qmax 0.5 sec -+ qmax = 0.435 rod/sec 

9 ma/qmax - 1.0 sec -+ 9max = 0.435 rod 

u /99 .. 2.0 sec -+ u = 28.0 ft/sec ma max max 

x /u - 3.0 sec -+ ma max x = 84.0 ft max 

For the vertical channel of the CH-47: 

;. . 
7.5 ft/sec w w ... 2.5 sec ... V ... w = ma max z max max 

z /w .. 4.0 sec -+ z = 30.0 ft 
ma max max 

These design parameters and the quadratic synthesis technique were used to 

generate the closed-loop system dynamics for the sev~n different levels of longitudinal 

control automation presented in Section 6. 

3.3.4 COUPLED LATERAL CONTROL 

The state and control vectors for the coupled lateral helicopter control system 

design are defined below: 

y lateral position 

¢ roll angle 

W yaw angle 
x = lateral velocity Vy 

(3-23) 

p roll rate 

r yaw rate 

[:~J 
roll cyclic input 

u = 
yaw cyclic input 

(3-24) 

The system matrices Fond G for the lateral modes are also developed in Appendix B, 

and the stability derivatives for the CH-47 are given in Appendix E. 
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The control weighting matrix is 

(3-25) 

In this case the maximum control inputs are again related to the angular acceleration 

limits: 

°a = 
Pmax 

Lo!lxx max 
(3-26) 

r 
6r 

= max 

No /Izz max 
r 

(3-27) 

From the uncoupled models in Subsection 3.2, the values of the lateral accelerations are 

. 
Pmax = 0.87 rad/sec 2 

r= 0.87 rad/sec2 
max 

As before, the A weighting matrix takes on different forms depending on the 

level of control automation. Examples are 

• Roll Rate and Yaw Rate Command 

0 0 0 0 0 0 

0 0 0 0 0 0 

A = 0 0 0 0 0 0 

0 0 0 0 0 0 

0 0 0 0 -2 0 Pmax 

0 0 0 0 0 -2 r max 
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• Roll Angle and Yaw Rate Command 

0 0 0 0 0 0 

0 -2 
¢max 0 0 0 0 

A == 
0 0 0 0 0 0 

0 0 0 0 0 0 

0 0 0 0 0 0 

0 0 0 0 0 -2 r max 

• Lateral Velocity and Yaw Angle Command 

0 0 0 0 0 0 

0 0 0 0 0 0 

0 0 -2 0 0 0 Wmax A == -2 
0 0 0 V 0 0 

Ymax 
0 0 0 0 0 0 

0 0 0 0 0 0 

Maximum values for the state weightings again can be determined from the 

uncoupled models and the acceleration limits above. For the CH-47, these are 

). ... 0.5 sec 0.435 rad/sec r r -+ r = ma max max 

~ma/rmax ... 0.7 sec -+ Wmax = 0.30 rad 

Pma/pmax ... 0.5 sec -+ Pmax = 0.435 rad/sec 

¢ma/Pmax ... 1.0 sec -+ ¢max = 0.435 rod 

vma/g¢max ... 2.0 sec -+ V .. v == 28.0 ft/sec 
-Ymax max 

Yma/vmax ... 3.0 sec -+ Ymax = 84.0 ft 
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3.4 FLIGHT DIRECTOR DESIGN USING QUADRATIC SYNTHESIS 

This section describes a procedwe for using the quadratic synthesis technique 

to design flight director signals for the optimal control pilot model. 

3.4.1 DESIGN OBJECTIVES 

The basic concept associated with the use of a flight director is to provide 

the pilot information that is useful for control, thus rendering the piloting task easier 

in some sense. The general form of the flight director signal is a linear combination of 

vehic Ie states 

FD = hI x{t) (3-28) 

with possibly some filtering to remove high frequency components! The flight director 

gains h are chosen so that if FD{t) is kept "small" the resulting aircraft motion is desirable. 

Since the pilot is still in the loop, there are two is~ues that relate to the harmony between 

FD{t) and pilot response. The first concerns the nature of the control task as viewed by 

the pilot. Thus, the task of keeping FD{t) small should not conflict with the overall 

control task requirements. In the optimal control pilot model the latter is manifested in 

the choice of a control input, u, that minimizes the quadratic cost functional 

J{u) = E lim 2-1T {Y'Q Y + u'Q. u} dt 
T -00 TOY u 

(3-29) 

The second issue relates to the required form of the pi lot compensation. It 

is well known from experimental results in manual control that one of the easiest control 

tasks is associated with K/s dynamics, wherein the pilot acts (approximately) like 

= u{s) (3-30) 
y{s) 

tNote that pilot control is not added directly into the flight director signal. 
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Thus, from a workload point of view, one should design a flight director signaIFD(t) 

where the resulting pilot response is 

u(s) = H (s) • FD(s) = H (s) • h I X (s) 
·00 

This is tantamount to picking h so that the open loop transfer function 

-1 
V(s) = hI. (sl - A) B 

is approximated by K/s. 

3.4.2 SIGNAL GENERATION 

(3-31 ) 

(3-32) 

The above concepts and objectives have been recognized in the literature 

(References 8-10). With in the framework of the optimal control model, Reference 9 

has suggested constructing FD(s) as 

FD(s) = ~ h.(s) y.(s) 
i = 1 I. I 

(3-33) 

where Yi(s) ere the displayed outputs and hj(s) are the internal transfer functions gener

ated by the optimal control model (Reference 11). This approach has FD(s) compatibl e . . , 

with pilot (subjective) control requirements~ and has inherent filtering built into the 

generated signals via' the h.(s). However, only the system outputs are included in FD, 
I . 

and the computation of the h. require arbitrary chqices for pilot observation noises, 
I .. 

thresholds, etc. 

The approach that we follow in selecting a flight director signal to be asso-

ciated with a given control is to recognize that the "optimal" control generated by the 

pilot model is (see Appendix A), 

TN ~. + u. = -t! ; (t) = u (t) 
• I I I C 

(3-34) 
I 

3 - 26 

AEROSPACE SYSTEMS, INC •• ONE VINE BROOK PARK • BURLINGTON. MASSACHUSETTS 01903 • (917) 272-7617 



Thus, associating the lag (TN.s + 1)-1 with the pilot, it is seen that a flight director 
I 

signal 

FD. = -l,! ~ (t) = u (t) 
I I C 

(3-35) 

is precisely the control that the pi lot model would apply under ideal conditions! Sum

marizing, the design of a flight director associated with control i is as follows: 

• Select the nominal cost functional weighting associated 
with the ·subjective task requirement~, 

• ·Compute the feedback gains Q .• , 
I 

• Retain only the important elements in £,. to simplify 
. It' I Imp emen ahon. 

The above approach is simple, is related to the pilot's interpretation of the 

task, and assures that the pilot's transfer function between FD. and control u. is ap-
I I 

proximately as given above. 

3.4.3 VALIDATION OF DESIGN MODEL 

To test the above technique, we perform a design for the pitch axis and the 

power (collective) axis, for the CH-46 in hover mode. The results are compared to the 

flight director described in Reference 12. The cost functional weightings for this task are 

selected as (see Section 4) 

q = -( 1 )2 
Yi Yi ,max 

(3-36) 

where the corresponding maxima are 

tThis approach is val id if the pilot time-delay T is negligible with respect to system 
time-constants. 
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AX = 25 

fj z = 5 

v x> 100 ft/sec 

V = 2 ft/sec z 

The control rate weightings are selected to give TN. - 0.1 withq. = 0 • .25 (in/sec)-2. 
. I u. • 

I,mln 

The important feedback gains in each of the flight director channels are 

FD = e x(t) + e· V (t) 
X X x x 

FD = Cz(t) + e· V (t) z z z z 

Since the overall scale factors of these signals are arbitrary (depending on display gain) 
" ' 

we normalize the signals by the positional gain. This provide~ an intuitive feel for the 

ensuing time response as well, since if the flight director signal i's zeroed, then the 

system response is exponential with time constant e· /C , or e. /e . The normalized x x z z 

values of gain ratios found via the optimal control model are 

e. C. x = 10.3, z = 2.51 
e 

x 

For the flight director design given in Reference 12, which was obtained ,through extensive 

flight testing, the gain ratio e. /e = 10.0 which is in excellent agreement with the x x 

above resul t. 

The results for the power flight director command are somewhat different 

though and require further analysis. The form of the flight director given in Reference 12 

FD = O'z(t) + ~z (t) + Yz' (t) z 

where CI, ~, and yare weighting coefficients, and the velocity/displacement weightings 

are given by 
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..!. ::: 10 sec 
01 

If the values of the accelerometer signal are expressed in terms of the state variables 

through the state variable equation, we obtain 

z ::: t- ~(t) + \)0 (t) 
c· 

which becomes 

FD ::: OIZ(t) + (~+ yr-) i(t) + Y \)5 (t) 
Z c 

Using the numerical values for the stability derivatives at hover, we find that the ratio 

of actual velocity gain to position gain is given by 

~ + Y L ::: 2.64 sec 
Ol 

which is in very close agreement with the value obtained above. This gives further con

fidence to our fl ight director signal design technique. 

3.4.4 MODELING THE FLIGHT DIRECTOR EFFECTS 

In order to include the flight directors within the framewc;>rk of the optimal 

control model it is necessary to select threshold values and cost functional weightings. 

If instruments have been specified (i.e. format level) then thresholds can be !=hosen 

based on eye phys;'ological considerations. At the element or informational levels, 

thresholds and/or maximum excursions must be chosen via alternate means. 

Before we select cost functional weightings it is appropriate to consider 

whether indeed the signals FD. should even be included in the cost functional. This 
I 

issue has been raised in Reference 9, in a somewhat broader context. Basically, one 

must dec ide on the nature of the pilot's control strategy. Exc luding the FDi from the 

cost functional implies that the pilot's control objectives are basically the same as 

before introducing these signals, i.e., in terms of the situation variables Ax, l::.y, etc., 
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and the fl ight directors provide only for enhanced state information. Including the FO. 
. , I I 

within the cost functional, in addition to the other terms, implies that one of the pilot's 

direct control objectives is to keep the FO. small •. 
I 

In our work we will interpr~t the piloting task to be the latter. Our method 

for choosing the associated cost functional weightings on the FO. is to pick 
I 

(1 )2 q.= -
I FO 

i,max 

(3-37) 

where we determine FO. by I,max 

FOi,max = l£'i'~(t)1 x = x' 
max 

(3-38) . 

for displacement variables i.e. we substitute into the expression for FO. the maximum . I I . . 
subjective values for the positional variables, ",x, f:,Z, a. The rate variable terms ~re set 

to zero when evaluating the FO. • The threshold values on the flight director dis ... 
I,max 

placements are chosen as 

1 
aFO = - (FO.) i' 4 I max 

(3~39) 

and the corresponding rate thresholds are picked as 

_ 1 
a .... - - a Fu. 2 FO. , , (3-40) 
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SECTION 4 

CONTROL THEORETIC MODELS FOR PREDICTING PILOT 
MONITORING PERFORMANCE 

A very important aspect of evaluating different display/automatic systems is 

the ability to predict human monitoring behavior, and to give a metric for assessing 

monitoring performance. With the optimal control model, we have already obtained 

such predictive capabilities for human control response. This section examines different 

approaches for monitoring prediction and choices of monitoring workload performance 

metrics. 

4.1 CHARACTERISTICS OF MONITORING MODELS 

The approach for determining display requirements and for evaluating systems 

of differing automation levels is discussed in Section 20 Basically, the total workload 

level fTOT is selected; then, for a given automation/display system configuration, the 

fraction of control attention fc:5 fTOT that is required to achieve a desired performance 

level is determined. The excess capacity, fTOT - fc = fm is thus available to the pilot 

for monitoring the displays. This approach, in which control performance is established 

first, was followed since it a priori limits consideration to those systems that have 

realistic requirements at the initial stages of investigation. Thus, for systems in which 

f >0, the objective is to determine how this monitoring workload is allocated among 
m 

the n displays; i.e., to determine the f , i = 1, ••• , n • y mi y 

The monitoring models that are considered have all been evaluated in 

the light of certain desirable characteristics. These are determined by the overall 

goals of the monitoring process as used by pilots: 

1. Assess aircraft situation with respect to mission requirements, by 
minimizing the {relative} estimation errors associated with variables Yi ~ 
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2. Assess operation of aircraft displays and controls by cross-checking 
displays for redundancy and self-consistency to detect system failures. 

The first goal is a statement of the well-known fact that pilots desire situation· 

information in addition to the control information provided by the flight direct(l)r and 

other tracking aids. The second goal indicates that the pilots will continue to scan every 

available instrument which is important to the approach, even though straightforward 

appl ication of optimal estimation/control models of the pilot would indicate that some 

instruments may not be scanned because of the correlated information among displayed 

variables. The goal of this scanning process may be thought of as the detection of 

instrument and control system fai lures. 

Thus, the important characteristics of the monitoring models are assumed to be: 

1. The ability to assess the performance of the aircraft from situation 
displays. Implicitly derived variable rates are not monitored, but 
their information is used to obtain better estimates of the explicitly 
presented display variables. 

2. No monitoring of fl ight directors, or other combined state information 
that is geared to aircraft control. Thus, for these instruments, f = 0 
so that fTOT. = fc.• mi 

I I 

3. Required monitorinq of all primary status instruments. Thus, 
f 2: E>O. . 
m. 

I 

4.2 MONITORING MODELS 

The two major components of a monitoring model are the monitoring per-

formance metric (the method by which monitoring performance is evaluated), and the 

attentional allocation scheme (the manner in which the model allocates the attention 

among the various displays). Ideally, the two components can be combined by requiring 

that the attention allocations f be chosen to minimize the given metric subject to the m. 
I 

constraint "f = f and that each f be greater than some specified value. However, 
~ m. m m. 

I I I 

it is possible to choose the fm. according to criteria other than optimizing a performance 
I 
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metric. Several methods for choosing the f are discussed below. In order to keep the m. 
I 

presentation simple, these assume that the pilot is monitoring an automatically controlled 

system so that each f = 0 and thus fTOT = f • Situations in which the aircraft is under 
. c i i mi 

manual control, i.e 0, f > 0 are considered in Subsection 4.3, wherein the f is added c. m. 
I I 

to f • 
C. 

I 

4.2.1 NON-METRIC BASED MODELS 

4.2.1.1 EQUAL ATTENTION 

Choosing the attentional allocation according to 

f = f In m. m y 
I 

, (4-1) 

while simple, does not take into account the relative importance of instruments, nor 

their correlations. However, it does assure that all instruments will be scanned for 

failure detection. 

4.2.1.2 PEAK EXCURSION MONITORING 

It is reasonable to expect that a pilot will monitor a signal when its volue 

exceeds some multiple, ~, of its standard deviation. Thus, usual signal levels are not 

of immediate concern, but signal values greater than usual are monitored. The chqice 

of f becomes m. 
I 

(4-2) 

This technique assumes that the pilot will look at variable Yi with probabil ity 

_ f whenever ly.1 exceeds ~C1 • ~ is a parameter chosen so that~) = f • However, 
0i I Yi i mj m 

·the f remain to be chosen in some plausible manner. This scheme introduces the con-o. ) 
I 

cept that monitoring is dependent on relative signal values (i.e., on the ratio of 
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I y. va: where (J is the standard deviation of yJ. Conceptually, the f should be 
I Yi Yi I 0i 

related to the II importance II , or information content of the display. However, a pilot 

may not necessarily look at a variable just because ly.1 >~(J. if 
I I 

1. He can acquire this information from a second display highly correlated 
with y .• 

I 

.2. His estimation error in y. is sufficiently small so that looking at y. serves 
no purpose except instrulnent verification. I 

. 3. Both y. and (J. are less than the display visual or indifference thresholds 
(i .e., 'the diJplay may be poor). 

Nevertheless, this model with ~ = 1.5-3 means that the human will monitor 

the unusual occurrences. In fact, this model with f = 1 and ~ = 3 requires a minimal o. 
I 

or residual attention be placed on each display of f ,.., .01; if ~ = 2, each f ~ .05. m. m. 
I t I 

By interpreting this to mean a monitoring of unusual or failed situations, this mod~1 

handily provides a lower bound for each f • m. 
- I 

4.2.1.3 NYQUIST CRITERIA MODELS AND THEIR EXTENSIONS 

As first postulated in Reference 13, a human samples an instrument 

periodically in an attempt to reconstruct the associated time signal. Thus, information

theoretic ideas, particularly Shannon1s sampling theorem, were used to obtain the ex-

pression 

A. 
fmi = 2c 1 wi 1092 ~ + 2w

i c2 
I 

(4-3) 

where wi = signal bandwidth, Ai = signal RMS amplitude and Ei = permissible rms 

error. c 1 and c
2 

are constants, the latter used to account for minimum fixation time .. 

For multiple instruments where the ratio of signal power to magnitude of significant 

deviations E. are roughly constant, the f would be proportional to signal bandwidths. 
I m. 

I 

t...)ne might conjecture that f > .05 will enable the detection of system failures in 
h • m. 

sort time. I 
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Thus, since W. is proportional to a./a , , r y 

f = ka. /a 
m. y. y. , " 

(4-4) 

with 

k =(La. /a )-1. f y. y. m 
i ' I 

(4-5) 

This simple periodic sampling model would not adequately predict behavior 

in more complex situations with correlated signals and aperiodic sampling behavior. 

Noting that pilots are often concerned only with detection of extreme readings rather 

than with signal reconstruction, Reference' 14 proposed a conditional sampling scheme 

that would result in aperiodic behavior. In this approach, the human is considered as 

a channel for the transmission of discrete messages in lieu of a complete time function. 

In this context it is possible to postulate several {somewhat related} sampling strategies. 

Thus, Reference's 14 and 15 hypothesize a strategy in which a sample is taken when the 

probability that the signal exceeds a prescribed I imit is greater than some subjective 

probability threshold! Reference 15 assumes that a sample is taken when the probabil

ity of exceeding the limit is a maximum. On the other hand, Reference 15 suggest~ a 

sampling strategy based on a "Variable Nyquist Interval II • Unfortunately, non~ of these 

conditional sampling models have been tested against experimental data nor have they 

achieved a high level of acceptance in the manual control field. 

4.2.104 MONITORING FOR FAILURE ANTICIPATION 

The assumption that a pilot monitors an automatic system in such a manner 

as to anticipate a manual takeover provides a basis for an alternate monitoring model. 

For a given failure, one can solve the control problem associated with the pilot control-

tThe form of thrs model is somewhat similar to that of Subsection 4.2.1.2. 
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ling the failed dynamics subject to an affentionallevel of fc = fm• Optimizing the 

confT91 cost for the f will provide the monitoring fractions f by equivalence. c. m. 
I I 

Although this method has some intuitive appeal, it suffers drawbacks in 

that 

1. A speci fi c anti ci pated failure mode and dynami cs must be assumed. 

2. If there were a failure, the f would probably not equal f so that c m 
the f as found may have little relation to the f • . c. . m. 

I . I 

4.2.2 MONITORING METRICS 

The'monitoring models discussed above are not geared, to a performance metric 

with which to evaluate sampl ing behavior. However, once a monitoring strategy, f m. 
I 

is determined, any number of metrics may be applied after-the-fact. This suggests an 

alternate, more appealing approach to the monitoring problem: to first specify a 

meaningful· performance metric that embodies the. goals of the monitoring function, 

and then to choose the f to minimize the selected metric. Consequently, the dual· m. 
I 

goals of monitoring as status determination and failure detection suggest the following 

two monitoring cost functionals. 

4.2.2.1 ESTIMATION ERROR COST FUNCTIONAL 

For status determination the pilot's monitoring strategy is to choose the f 
. , m 

subject to 

n 

~ f = f ; f >0 L m. m m. 
·-1 I I I-

to minimize the monitoring cost 

n 0
2 

l ye. 
J ==_ "y._1 

m L..J 1 2 
ny i=l 0 

Yj 

(4-6) 

(4-7) 
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where 0 is the rms estimation error in monitoring signal y.. The Y. are scale factors e. I I 
I 

that are either 0 or 1 to indicate whether an instrument is of monitoring concern. Ob-

serve that this cost functional has the properties 

so that 

1. J :51 since it is the relative estimation error that is weighted. m' I 

2. Only if f = 0 and no information concerning y. is obtained from other 
. . mt i 02 _ 02 th . 2 < 2 I msrrumen scan - ,0 erwlse 0 o. 

e i Yi e i Yi 

Another interpretation of J is obtained by defining 
m 

(j 
e. 

k. = __ I = error fraction for variable y. 
I 0 I 

y. 
I 

1/2 
J = rms monitoring lIerror fraction ll 

m 

(4-8)' 

The optimal choice of the f provides a prediction of the monitoring fraction for each m. 
I 

displayed variable. Note that 

1. All instrument correlations are considered in this formulation, so that 
key instruments have larger f • 

m· 
2 I 

2. If 0 «threshold value, the model will 
y. 2 ? 

but atcept 0 ("J () by keeping f "" O. 
e i Yi mi 

. . t I 2 not try In vam 0 ower 0 , 
e· 

I 

The error fractions k. are useful in relation to the probabil ities associated 
I 

with estimation error criteria. By defining 

(4-9) 

as the probabil ity that the estimation error at any time exceeds a fraction ~ of the sig-

nal rms, then (assuming Gaussian statistics) 

.4 - 7 
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(4-10) 

Making the change of variable w = y/o - '2 yields, noting k = 0 /0 , 
e VL e y 

(~H) 

A reasonable performance level to expect in monitoring is /3 = 1/2, i.e., the estimation 

error should not exceed 0/2 of the monitored variable. The percent of time (or 

probability) that this criteria is exceeded is E(1/2), and is monotonically related to the 

error fraction k. This gives "another interpretation to the cost functional (Equation 

(4-7)). 

4.2.2.2 FAILURE DETECTION COST FUNCTIONAL" 

A recent decision model based on Wald's sequential analysis (Reference 16) 

provides an excellent description of the human's ability to detect failures in random 

processes. A single-channel version of the model was successfully validated with 

experimental data. A more elaborate test of the model was made by applying it to the 

task of monitoring a fully automatic ILS approach, with equally encouraging results 

in describing the experimental data. 

The model for monitoring a single instrument uses Wald's Sequential 

Probability Ratio Test to derive a decision function based on the log likelihood ratio 

of each observed residual from the Kalman filter. The decision function A at time m 

tm is given by 
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where 

f... ;;::: 0 
m 

f... < 0 
'm 

~ = f... + (_r m_-_9/_2 
) 

m m-1 a" 
r 

(4-12) 

(4-13) 

andr i's the Kalman filter residual at t ,a is its standard deviation, and Sis a bias 
m ' m r 

parameter beyond wh ich the process is considered to be "failed ll
• Note that thT de-

cision function is reset to zero should it become negative. 

The decision of IIfailure li or IIno failure" is made from the current value 

of f... according to the rule 
m 

a 
if A > 

m 
r In A, decide IIfai lure ll 

a 
if 0 ~ A ~ -.-!:. In A, decide "no failure" 

m e (4-14) 

The constant A is related to the probabilities of the two'types of errors: the probability 

of a missed alarm PMA (deciding IIno failure" when a failure is present); an~ the 

probability of a false alarm P
FA 

(decidin? IIfailure" when no failure is presentL 

(Reference 4). 

There are two metrics proposed here: the mean time to detect a failure and 

the mean ,number of looks to detect a failure. These can be determined from the ensem~le 

performance of the model of human monitoring and decision making as follows. 

* Assume that a constant (bias) failure of magnitude 9 has occurred, i.e., the 

residual r has increased by A *, and thatall residuals have the same variance (j2 which wi II m r 
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be a function of ~ the fractions of attention for monitoring { f
m

.}. Then the decision 
- - I 

function is given by 

1 (r + e * - 9 /2 ) 
II. ... A + _m ____ _ 

m m-1 o 
r 

(4-15) 

(4-16) 

where ri is the zero-mean component of the residual _and A
mf

- 1 is assumed zer~. 

The index m in Equation (4-16) represents the "Iook number II sinc~ a decision cannot 

be made without glancing at the instrument, and (~ - mf) is the number of looks that 

have elapsed since the failure occurred. The above approximation is valid when 0 
r 

is much less than the level of the detection threshold, a reasonable assumption when 

the false alarm rate is not too high. This approximation is also useful in determining 

the mean number of looks to detect the failure since at the moment qf detection 

( 

* _ ) mf+mD r 0 

Am = m
D 

8 - 8/2-+ L J.. = ~ In A 

or i=m
f 

0 r e 
(4-17) 

where mD is the number of I~oks to detect the failure: The mean value of mD is thus 

(approximately) 

In A 
m - ------:-

D : (8*. : 9/2.' 
y y J 

(4-18) 

where 0
2 is the a priori variance of the displayed signal. For the case of multiple 
y 

instruments the mean number of looks to detect failures is therefore 
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n y 
J =_1_" 

m n 4..J (4-19) 
y i=l 

and is a reasonable metric to minimize by proper choice of the f • m. 
I 

. Another important performance metric, is the mean time to detect a failure. 

This can be expressed in terms of the relevant parameters of the optimal estimation model 

as we now show by using a measure of "looks per second II • If the ith instrument has re-

ceived n i looks in T seconds, and each look requires II t seconds (lit ~ 0.3 - 0.4 seconds 

according to experimental eye movement data), then the fraction of time spellt looking 

at the i th instrument (dwell fraction) is 

n. ll t 
dwell fraction = _I-

T 
(4-20) 

Under the assumption that this is close to the fraction of attention f ,the scan period m. 
I 

(seconds/look) can be determined 

T 
6 

= t (4-21 ) 
n f 

i m. 
I 

Thus the mean time to detect a failure on the ith instrument is 

(4-22) . 
f 
m. 

I 

so that minimizing the functional 

n (12 

1 t· Y. r. 
J

m
=-- I I 

f (12 n '-1 y 1- m. y. 
I I 

(4-23) 

4 - 11 

ASRDSPACE SYSTEMS. INC •• ONE VINE BROOK PARK • BURLINGTON, MASSACHUSETTS O1S03 • (S17) 272-7617 



minimizes the average mean time to detect failures, as compared to minimizing Equation 

(4-18) wh i ch is the mean number of looks to dete ct fail ures. The di sadvantage of usi ng 

Equation (4-23) is that it does not reflect the differences in bandwidths among the dis

played signals. If one postulates, as Senders does, that the look rate is proportional to 

the Nyquist sampling rate, then the number of "looks" required to detect a failure is pro

portional to the ,number of elapsed "cycles" of the displayed signal required to detect the 

failure. This has an obvious intuitive appeal. On the other hand, we suspect that pilots 

may sometimes monitor the lower frequency signals at a somewhat higher rate because of 

time considerations. One example of this is a relatively smooth, coupled ILS approach in 

which the ILS needles have very tow frequency content (on the order of 2 to 10 cycle~ for 

the entire approach). Detection time would take precedence over detection looks in this 

case. 

4.2.3 METRIC BASED MONITORING MODELS 

Having postulated metrics for monitoring performance, one must next consider 

the mathematical problems of minimization with respect to the f • These are con-
, m~ 

I 
sidered below. 

4.2.3.1 RESIDUAL MONITORING FOR FAILURE DETECTION 

In considering the cost functional (Equation (4-19» within the context of an 

optimal control/esHmation model, the Kalman filter residuals are (neglecting the humans 

time delay ,-), 

r.(t) = y.(t) - c: x.(t) 
I I I I 

(4-24) 

h i· th .th- • 
were c i IS e I row of the C matriX: it is well known that for optimal filtering the 

residuals are wh ite with covariance equal to the observation noise covariance. Thus, 

= p.&2 If 
I Y m. 

• I 

(4-25) . 

I 
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where 

q :::: 0 IN.{cr ) 
y. y. 1 y. 

1 1 1 

and N is the describing function gain for the display varioble threshold. 

Substituting into Equation (4-19) gives 
n 

1 y Y. P. l' 
J:::: ~ II 

m -n-"l N. .--
f y 1=, 1 m. 

1 

This expression is minimized (subject to constraints) at 

* Y. p. ( ny, Y. P. ) - 1 f :::: _1_1 • L _I _I • fm • 
mj N.. 1 N. 

1 1= 1 

Thus, for well-designed displays (N. == 1, p. == .OlTT), each subject to the same 
1 1 

probability of failure ("I. :::: "I.), 
1 I 

* f :::: f In 
m. m y 

1 

(4-26) 

(4-27) 

(4-28) 

This provides a new interpretation of the simple, equal attention allocation scheme, 

noted in Subsection 4.2.1.1. 

The second failure-related cost functional given by Equation (4-23) can also be 

optimized in a straightforward manner. For the case N. = 1, p. = P., Y. = "I., an equal 
I I I I I 

division of attention is again obtained. This is to be expected, since the cost functionals 

in question have been motivated in terms of (uncorrelated) bias errors on instruments. 

4.2.3.2 RELATIVE ERROR MINIMIZATION (ASSUMING UNCORRELATED 
INSTRUMENTS) 

As an approach towards minimizing the metric {Equation (4-7», inter-instrument 

correlations can be neg lected, and each instrument can be considered. to represent an un-
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coupled second order system consisting of y. and y:t. The human thus monitors these 
I I 

two variables to obtain an estimate of y. with associated estimation error e.. The 
I I 

problem is then:. "given observations Yl (t) = x(t) + vl (t), Y2{t) = k{t) + v2 (t), determine 

the best estimate of x (t). " 

This problem can be solved by designing a Kalman filter for the system 

(4-29) 

where 

Y2(t) = ~(t) + v
2

(t) = velocity measurement 
, . 

Yl (t) = x(t) + v 1 (t) = position me~surement 

V. =cov[v.(t)]i=1,2 
I I 

The opt.imal estimate is 

. 
~(t) = g[Yl(t) -x{t)] + Y2(t) (4-30) 

where 

Defining 

tSince relations between y. and y. are neglected, information concerning y. can only 
be obtained by viewing y.'. I : .. . I 

I 
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yields 

. 
'I"~(t) + x(t) = Y 1 (t) + "Y2(t) (4-32) 

as the first-order filter that generates the position estimate x(t). The error covariance is 

(4-33) 

Note thcit if V1 -+O or V
2

-+00, '1"-+0 and x(t) is obtained directly from Yl(t). If V
2

-+O 

or V 1 -+ 00,- g -+ 0 and x(t) is obtained by integrating Y2(t). 

For pilot monitoring, 

V. = P. O"~/f.N~ i = 1, 2 
I I I I I 

(4-34) 

Thus, for y 1 and Y2 obtained from a single display indicator 

:~ ~(N:~J ::. -f-
m
-
i
- . 

(4-35) 

For the case of multiple instruments, where it is assumed that only the position 

(and not the rate) variables are monitored, the monitoring cost functiqnal becomes 

1 
J =

m n 
Y 

1 
= 

n 
Y 

n 2 y cr 
~ ei 

i=1 a 2 
Yi 

n 
Y P. 
~ 

I 

N N. i=l y. Yi I 

cr 2 

( a~i • r:-) 
y. 

I I 

(4-36) 

where the sum is taken over the position variables only. For well-designed displays, 

N ;;1, N .. :1ond P.=.Ol'",ondtheoptimumf are· 
Yi . Yi I mi 

f m. 
I 

cr. 2 
* _ Yi 
- --=r-

cr 
Yi 

n 

. (~ 
cr.
2 )-1 y. 

-;-2- . fm 

y. 
I 
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This result, wherein f is proportional to signal bandwidth,- is precisely the Senders' 
m. 

I 

monitoring model arrived at via an entirely different process. 

Despite its simpli ci ty, there are drawbacks with the model as proposed, 

1. Instrument correlations are not treated. 

2. If cr. > > cr the mode I woul d pi ace a high percent of attenti on· on 
X· x. 

instrulment i. I In this case x(t) Y·1 (t) + r 1 (t) and the white estim.Dtion 
error has infinite MSE. Th is is Impossible since we must have 0 ~ :<;02 
and suggests that the first order model for x(t), Equation (4-29) ~ay x 
ne·ed modification. 

3. All of the attendant deficie·ncies c;>f the original Senders' model resurface. 

4.2.3.3 RELATIVE ERROR MINIMIZATION (ASSUMING CORRELATED INSTRUMENTS) 

Given the deficiencies of the simple, uncorrelated model we consider 

the entire dynamics of the system being monitored. o Thus, we assume that the pilot is 

monitoring an automatic (stable) system thdt is driven by white noise 

x(t) = A x (t) + Ew (t) 

y(t) = Cx(t) = displayed variables 

The pilot observes 

yp.(t) = y.(t - 'l') + v.(t - 'f) 
I I I 

i = 1, 2, 

The estimation error covariance for this monitoring task is 
T 

S = eA'I" ~ t''I" + f .l~ EWE;eA';dS 

o 
where W = cov[w (t)] and 2: satisfies the Ricattr equation 

- -
0= 2:A' + A2: + EWE' - 2:C' V C2: . y-
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and the observation noise covariances are as given in Equations .(4,..25) and (4-26). 

Substituting into Equation (4-7), and neglecting those terms that do not de

pend on V (or f ) gives 
Y m • . I 

where 

J = 
m n 

y 

tr [C t C I] 
e· e 

(4-42) 

(4-43) 
I 

The minimization of J with respect to the f is indeed a formidable task. Fortunately, m . mi 
the results of the optimal control allocation problem (see Appendix S) are applicable. 

The similarity to the control cost functional used to determine the control fractional 

attention f (sampling cost) is readily evident where c. 
I 

J = tr [L t 1 I] 
o e e 

(4-44) 

with 

L =diag (Q.) LeA ,-
e u 

(4-45) 

Thus, the same techniques used to find oj jo f can be used (with some minor changes) 

to find 0 Jm (0 f and to do the subsequent optimizing of Jm subject to the various con

straints on f • The computations are greatly simpl ified in the monitoring case since m. 
I 

0
2 is not affected by f • Thus, using the techniques of Appendix S, 
Yi· mi 

oJ V • 
~=~ P .• 
Of f II 

(4-46) 

m· m. 
I I 
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where 
00 

P = GlfeAIOc IC AO do. G 
e e 

o 
G =l:C' V-1 = filter gains 

y 
,. 
A = A - l:C' V -1 C = filter matrix 

y 

(4-47) 

The same. gradient projection scheme used to minimize Jo is thus directly appl icable to 

* the monitoring situation. ·In order to avoid a situation where f = 0, a constraint m. 
* I 

f. 2: E > 0 is imposed to assure each instrument is monitored for failure detection m. 
I 

purpos~s. 

4.2.3.4 SUMMARY OF MONITORING MODEL 

The monitoring model that was chosen in this study is that of the previous sub-

section. The monitoring cost functional has various interpretations via the error 

ratios··k., and in the case of uncorrelated instruments the model reduces to the Sendersl 
I 

model •. There is intuitive appeal to the model, plus the ability to solve the optimization 

problem using techniques already developed for solving the optimal control allocation 

problem. 

The one ,drawback to the model is that the constraint.f 2:€ must be im.., 
m. 

I 

posed artificially. As f = 0 could not happen in·a failure detection oriented metric . m. 
I 

it might seem logical to consider a monitoring cost functional that was a ~ of 

estimation and failure detection metrics. Thus, a reasonable modified cost metric 

might be (assuming equal weights to estimation and failure monitoring) 

n 0 2 + P. (J2 If 

~ 
e. I Yi mi J = I (4-48) 

m (J2 n i=l y y. 
I 
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The noise ratio P. is on the order of 0.01; thus for moderate attention levels, minimiz
I 

ing Equation (4-48) is equivalent to minimizing Equation (4-7). At low levels of 

attention, however, (say, f _ 0.01) the second term in Equation (4-48) becomes 
. mi . . 

important and prevents f from approaching zero as may happen when minimizing m. 

0-
2 • Thus we see that th'e two following optimization problems wiIJ yield nearly e. 

I 

identical results. 

I: n a 2 

~t( e i 

n i=l a 2 y y. 
+ f1-) 

m. 
I 

(4-49) 

f > o I:f = f 
m. ' m. m 

I I 

II: min n a 2 

{fmi } 
y e. 

L 
I 

a 2 n i=l y y. 
I 

f >E. Lf = f m. I m. m 
(4-50) 

I I 

In conclusion, after an examination of various schemes for predicting human 

monitoring performance, the scheme involving Kalman fi Iter optimization on the full 

aircraft model seems to hold greatest potential. I t is not simple mathematically, but 

fortunately the optimization of the f can be performed using existing human operator m. 
I . 

computer programs with only slight modification~ A default option should be included 

·to treat (singular) situations where the optimized filter produces f ... 0 for some i. . m. 
I 
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4.3 SIMULTANEOUS MONITORING AND CONTROL WITHIN A SINGLE AXIS 

The above discussion is relevant to the pilot monitoring assessment for a com-

pletely automatic system. However, if a pilot is actively controlling a vehicle (or 

axis) there are two reasons for,looking at a display variable: 

1. For control purpos~s, fraction f c .• 
I 

2. For monitoring purposes, fraction f • m. 
I 

Obviously there is an overlap that must be resolved. The following assumptions are 

made in this situation: 

1. The pilot allocates h is attention first to the control task requirements. 
Spare capacity is then available for monitoring. Thus, f and fare c c. 
chosen (subject to fc <fTOT - 0.8) such that a desired level of I 

performance is attained. The available monitoring fraction is then 
fTOT - fc = fm• 

2. The pilot next allocates f among all displayed variables -
m. -

those being controlled manLally and those being controlled automatically -
to mi nimi ze the total monitori ng cost. 

J =J 1 +J 2 m m m 
(4-51 ) 

where 

(J2 /02 for instruments associated wi th the manual control 
e y 

J = m2 

task. 

(J 2/0 2 for instruments associated with the automatically 

con~rol fed loops. 

3. The optimal f is not dependent on the optimal f (the reverse is not c. m. 
- I I 

generally true). Thus, any additional monitoring of a display does not 
change control strategy. -

For the manually controlled task, it is possible to optimize for f c.and compute 
- I 

the relative estimation error fraction (J 2 /02 associated with each displayed variabte. 
e i Yi 

Thus, it remains to distribute the f by allocating an f to each display to minimize m m. 
I 
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j 1 + J 2' It is quite I ikely that the optimal f will be npn-zero even for displays m m . m. 
I 

for which f
c

. is a reasonable fraction. This is because the information required of q 
I 

display for monitoring is generally different than that required for control (i.e., C 
e 

vs Lin J vs J ) • 
e m 0 

Therefore the p~oblem of determining f for only a manually controlled loop m. . . I 

is solved by first finding f to minimize J . Next find f while~) = f to minimize . c. 0 m.. m. m 
I . I I I 

J bearing in mind that the total attention to a display for purposes of observation is 
m 

" 
f
TOT 

= f + f - i.e., monitoring proceeds over and above control allocationan~ is . m. c. 
. I I I 

geared to J • 
m 

For the case of an aircraft with both a manual ~nd an automatic control 

loop, the allocation of f is accomplished by considering two "independent" tasks. m. 
I 

The following one-dimensional search technique for optimizing Jm 1 and Jm2 is 

suggested, once the optimal f are found, (Figure 4~ 1). c. 
. I .' 

In some situations it may not be necessary to allocpte any additional monitor-

ing attention to a display used for control purposes already. However it is difficult 

to ascertain this a priori since there may be displays needed only marginally for 

control purposes (e.g., pitch indicator for attitude stability system) but which will most 

I ikely be monitored to a higher percentage than the control-allocated f • Thus, the 
c. 

I 

above technique makes no a priori assumptions as to whether instruments are used 

primarily for monitoring or for control purposes. 
/ 
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.. 

Find optimal fond 0
2 

c. y. 
I I 

Pick f 1 = monitoring fraction associated with 
m manuallycontrolleddisploys 

f2 = monitoring fraction associated with 
m automatically controlled displays 

= f - fl 
m m ". 

Optimize J 2 with respect t() 

f2 to fj nd f2 ; ~ f 2 = f2 
m m .• m. m 

I I I 

Optimize J ,I with respect to 
1 m 'I 

f • Let f
TOT 

= f + f ; 
m, i c i mi 
~ f 1 = f'l 
I m. m 

, I 

Compute J = J 1 + J 2 m m m 

Compute estimation error ratios. 
for all variables 

No ~yes I ., J-----------<: .J -minimUm, '1 End 

Figure 4-1. Flow Diagram for Dual Axis Monitoring Allocations • 

• 
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SECTION 5 

MODEL VALIDATION 

In order to validate the pilot vehicle model, including the means by which 

workload metrics are established, the analysis procedur~ is applied to a CH-46C VTOL. 

As the CH-46C has been the subject of several studies at NASA Langley Research 
. ; ;, 

Center (References 12, 17 and 18), there exists a (flight t~st) data base against which 
,': 

model predictions may be compared. This analysis will consider the hover task only, as 
~ , ,. . 

thJs represents one of the most difficult VTOL. control requirements, and is amenable to 
~. '( . . . . . . . . , 

steady-state analysis t~chniq~es. The analysis is furtherrestri cted to the display format 
. ~ • '. .' . : '. t, . • . 

level by considering only the display panel/instruments used in the actual CH-46C 
, 

tests. The information and/or display element level analysis would be appropriate if 

new display systems were being proposed. The automation levels that we consider are 

the attitude command~ystems designed at NAS',.{ (R~ference 17'); the fu'ght directors are 

al~6 the NASA designs (References 12-17). 
. ~ .. , 

5.1 CH-46C DYNAMIC EQUAT,IONS OF ,MOTION 

This section presents the basic equations of' motion 'of the tH-46C, in

cluding a representation for the external wind-gusts~' It also derives the equations for 

the control stick inputs, taking into account the attitude command system used on the 

CH-46C. 

5.1.1 BASIC VEHICLE DYNAMICS 

The analysis ,uses the perturbation ~quations derived in App,endix C, written . . '. . . 

,ab()ut a ~over equilibri~m (80 = 6.8
0

) .• The stat~ variables are chosen as the Euler 

, angles and body rates to be consistent with the control augmentation and guidance 

schemes employed. Thus, for the longitudinal equations, the state vector is 
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where 

, I 

X = L~x, t:. z , he, flY. , t:.v. ,'q] x z 

t:.x = longitudinal (inertial) hover error 

t:.z= vertical (inertial) hover error 

b. e = pitch ~eviations (:~om 9 0) 

t:. v. = longitudinal (inertial) velocity 
x " ,-, f' 

f). Vz = vertical (inertial) velocity 
I • , I 

q = body-axis pitch rate 

The control inputs for the basic vehicle are the differential and gang collective 
I 

(5-1) 

deviations from trim, so that u = [6 aCI 6~cJ • The longitudinal equations, in the form 

x = Ax + Bu 

are given in Figure 5-1. 
; , 

where 

i, 

, For the ,lateral direction dynamics we choose as, st~te vector 
. - '. ." . 

x = [t:. y, ¢, 6'f I t:. Vy , P, r] " 

. .. , '. 

t:.y = lateral (inertial) hovering error 

¢ =' inertial roll angle 

6'Y = heading angle error 

6 Vy = lateral (inertial) velocity 

p = body-axis roll rate 

r = body-axis yaw rate 

. (5-3) 

These states have been chosen to be compatible with subsequent model following aug-
" " .,.,,' I, 

mentation schemes. The two lateral controls are u = [1:.0 I M J where t:. 5 = roll , a r a 

cyclic input and 66 = rudder 'or yaw cyclic 'input. The numerical values for the A and 
r 

'B matrices a're inCluded 'in Fi'gure '5-1. 
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5.1.2 AUGMENTATION SCHEMES 

The basic CH-46 is unstable and virtually impossible for a pilot to control 

without some form of stability augmentation system or command following system • The 

automation schemes that will be investigated are the NA~A designed pitch, roll and 

heading command systems using the differential collective, roll cyclic and rud~er, 

respectively. The pitch command model is 

• 2 .. 2 2 q = - CUlq + (J). e + K (J) 8 
m m mAe 

with ,= 0.75, W= 2.0 rad/sec, Ke = 0.15 rad/in •. The roll model 

is identical to the pitch model with K = K • The heading hold model in yaw, 
(/> 9 

2 2 
rm=2COUlrm+(J) '¥m+K,¥(J) ar 

has '0 = 0.7, ~ = 2.0 rad/sec and K,¥= 0.35 rad/in. 

(5-4) 

(5-5) 

(5-6) 

Having formulated th~ desired model characteristics, th~ ne~t step is to 

develop the compensation that will force the aircraft response to follow the model. In 

the NASA-LaRC design, the compensation used included lead, rate error and integrated 

rate error. The resulting frequency response characteristics showed that the aircraft 

response closely followed attitude commands over a wide frequency range, beyond that 

normally associated with pilot control bandwidth. If one wishes to precisely model 

pi lot-vehicle response for the augmented systems it is necessary to include the model

following compensation in the system description. This adds additional states in the 

vehicle equations, needlessly compl icating the analysis process since the pilot effec-

. tively "sees" a system that responds as the model. The simplified approach we follow 

in studying pilot response is to assume that the system exactly foUows the model, and 
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solve' for the feedbacks that are 'required to assure this condition. 'Additional vehicle' . 

states are' not needed, but a difficulty arises because of cross-coupling between the con

trol actuator dedicated to provide the model response and the effect 'of that actuator in 

othe~,state variables. For example, a differential, collective JTiay be ,used to satisfy the 

pitch response of the helicopter, but by so doing, it will have an influence in the 

translational equations. 

To show the means by which the augmented equations are developed, assume 

that the basic unaugmented vehicle, eq~ations can be written (AppendixD) 

(5-7) 

We have divided the state vector int~ two parts with x~ that porti'on of the state vector 

to. be controlled according to some desIred model response. ,The inputs to this system are 

the actuator inputs & which are dedicated to satisfying the model response. Disturbance 

inputs and other actuators affecting the equations of motion, but not being used to 

~atisfy ,tbe. rncx:lel resp~m.se can be added to Equation (5-7) but.are ,",ot shown here. 
. ,? . ," " •. ! . " • . . • • 

Assume :that it is desired to have the partition 'of. the ·state vector Xi follow' 

a model equation given by 

(5-8) 

... 
Note that the derivative of the model response is given by linear combinations of the 

.' " . 

model itself x2m , feed.back of the other part!tionof the s,tate vector Xl (e .. g. position), 
.•.• • .'."'! : • • '. '. • 

and the control stick inputs u. 

The actual response of x2 is given in Equation (5~7),as 

(5-9) 

,5 - 5 

AEROSPACE' SYSTEMS, INC.'. ONE VINE BROOK PARK • BURLINGTON, MASSACHUSETTS C1B03 • (617) 272,71517 



In order that the system respol1se given by Equation (5-9) follow the model response 

of Equation (5-8), i.e., x2 = X2mi we subtract'the two equations and solve for the' 

actuator activity which is dedicated to satisfy this response'. 

(5- 10) 

Substituting this value of the actuator activity into Equation (5-7) pr'!vides th~, following 

form for the state equations when the system follows the model. 
" I,' • !I " • 

• I' -"I 

(5-11) 

where 
, ' 

-1 
A * 1 r = All ,+ Bl B2 , (A21 -: A21 ) .... 

. ,; " -1 i',,' " 

A*12= A12 + B1B2 (A22 - A22) 
': .. ' 

(5~12) 

" 

Note that the;pa~tition of th~ ~t~te v~ctor x2 hasth~ d~sir~d response of the model",' but 

also that the dynamics of·the' other 'partition of the state vector Xl have 'bee'n altered be

cause of the effect of the actuator 6 on these equations. 

The above model-following'process is easily appli~d to include the command 

systems of Equations (5-4) through (5-6). For example, in the pitch command model 
.. - ' .I 

(Equation (5-4», the differential collective is the dedicated actuator, and the par-
.. . . 

titions A21 , A22" B2 are shown in Figure 5-1; the model partitio~s are 

Ail = [0 0 -w 
2 

0 0] 

A* = -2"w 22 ." 

B* = K (1.)2 
2 9 
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The resulting A*, B* matrices for the augmented system are shown in Figure 5-2. Note 

that the second column of the B matrix, associated with the power collective, is un

modified since this control is not used in the mOdel matching scheme. 

In the lateral case, both controls are used in the model matching process. 

The parti~ions.A21' A22, B2 areshown in Figure 5-1; the model partitions follow from 

. Equatitlns (5.-5) and (5-6) as 

A* = 22 

B* 
22 

o 

-w 2 

and provide the lateral direction<;ll equations of motion for the aircraft with the roll and 

yaw augm~ntation. sy.stems engaged. 

5.1.3 WIND GUST DISTURBANCES 

The principal external disturbances acting on the helicopter are due to the 

wind turbulence or gusts .• The representation of these effects in the linear system model 

involves two considerations: a model of the wind spectrum, and the way in which the 

wind affects the vehicle aerodynamic forces. The gust model that is used is the Dryden 

model with power spectral density 

(5-13) 

To obta.in a randqm wind model with this PSD, a white noise n (t) with variance 
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is passed through the linear system 

• V 

v 
= 2a 2 0 

g L 

S (t) = -~ ~(t) + T) (t) 
L 

(5-14) 

(5-15) 

In our modeling work we will as!iume moder~te turbulenc~ with representative parameters 

a = rms gust velocity = 3 ft/sec 
g' '. 

V jL = gust bandwidth = O. 1 rad/sec 

We assume that independent gusts (lct along all three of the aircraft (body) axes. A 

normal component ~ . induces primarily normal accelerations, or perturbations in angle-
'. w 

of-attacL An, axiql component gu induc,es pr,imarily forward speed perturbations, and a 

lateral component ;v perturbs lateral velocity.For simplicity we assume CJ = CJ = a , .' . gw gu gv 

= 3 ft/sec. 

The componeqts'~w(t), ~u(t) and \,(t) are subtracted from the dynamical 

states w (t), u(t) and v(t), respectively, in t~e equations of motion. The result is, the 

m.odi fi cations. , 

• X X _ w 
u---m 

g - ~~ + ••• w m u 

· y 
v = - ; ~v + 

· Z Z 
w = -.-!!.. ~w - u 

~ + ... m m u (5-16) 

L _ v 
P---I- ~v + 

xx 

M M 
w 
~ - u 

Su + q=-- ... 
Iyy Iyy 

" Nv r =-1 ~ + 
zz 
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When these terms are carried through the-Euler transformations to the inertial frame state 

variables as defined in Equations (5-1)and (5-3), the end result is the addition of the terms 

F s (t) + F ~ (t) 
u u w w (5-17a) 

to the longitudinal equations, and the tenn 

F- ~- (t)-
v v (5-17b) 

to the lateral equationst. For the CH~46C at hover, these terms are 

0 '0 0 

o . 0 . ! 0 

'0 '0 0 
F = F F = .u '0.01535 . , ';,' .. "w . 0:00595 ; v (r~02663 

-0.0634 0.3733 
; . 

0.00789 

-0.00656 0.00285 -0.00097 

Note'that these terms are appropriate to both the basic ond augmented' vehi cles as the 

wind gust'states are not included in model following feedbacks. Thus, we arrive at the 

final model for the system/gust dynamics compatible with the pilot model formulation 6f 

Appendix A, 

. 
x(t) = Ax{t) + Bu(t) + E;(t) (5-18) 

where, in the longitudinal case 

x = [s ,s ,6.x, Az, e, V , Vz~ q] 
u w x 

(5-19a) 

and, in the lateral case 

x = [s , fly, ¢, '¥, V , p, r] v y 
(5-19b) 

. and where s{t) is a white noise vector. , 

tAdditlonal states must be added to the system dynamics to include the noise shaping 
dynam i cs Equation (5-15) for each s.. . 

I . 

AEROSPACE SYSTE,MS, IN.C. o. Pl'ole vll'Ie BROOK PARK 0 ,.BURLINGTON, MASSACHUSETTB 01S03 o (B1?) 2?B·?61? 



5.2 CH-46 HOVER DISPLAY/CONTROL PARAMETERS 

In applying the optimal control model of the pilot, it is necessary to describe 

the display informatic;m in a form comp~tible with vehicle states and controls, -

y(t) = Cx(t) + Du{t) (5-20) : 

In addit~on, values must be chosen for the visual and/or indifference thresholds, i'.e. 

those limits on displayed items within which the pilot is less likely to'take correct.ive 

action. The values are estimates derived from the c!isplay gains; display resolution, 

display markings and pilot opinions. 

5.2. 1 PRIMARY DISPLAY INPUTS - HOVER MODE 

,The four primary i nstrumerts QPpropriate to the hover mode, are the map (or 

HSI)~ radar altimeter, IVSI and ADI. - Ass\.!ming'that the pil,ot perceives both the posi

t~on and rate of a display indicator, we have the model inputs listed in Table 5-1. 

Alsog.,iven in Table 5-1 are the vqlues chosen for the display thresholds, as well as sub-' 
. . " ' '. ~ ."!.-

jective values for the maximum deviations that a pilot will tolerate in the observed 

quantities.' These"latter values are used tq generate cost functional weightingsin' the 

optimal control m,odel according to 

( 

,1 ) ~ 
q = , 

Yi Yi, max, 
(5-21 ) 

The large thresholds associated wit~ perceiving horizontal position and veloci

ty errors at hover is a reflection of the small map' scale (100 ft/in at hover) and the 

relatively large size of the aircraft symbolt. The associated maximum deviations for 

flx~ AY refl'eCt the 50'ff diam'eter of th~ landins pad. The small thre;hold' on altitude 

deviations reflects the expanded scal~ of the radar altimeter below 100 ft, with an 

tAt a viewingidistance of 28 in,'a20 ft error is less than 0.5° 'visual arc. 
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Table 5-1. CH-46C Primary Display Inputs (Hover Mode). 

INSTRUMENT· VARIABLE THRESHOLD MAX. DEVIATION 

MAP t:,x 20 ft 25 ft 
, I:' 

., 

Vx 10 ft/sec --
ALTIM 

, ' ' , " 

4 ft 5 ft h.Z 

-, ;V , , 
' - 2 ft/sec ., - 2 ft/sec . z 

ADI e 1° 20 ., 
." 

q 0.50/sec 10/sec 

IVSI Vz 1. ft/sec 2 ft/sec 
' . . 

Vz 0.5 ft/sec --
" 

" , 

MAP h.y 20 ft 25 ft 
. 

Vy 
, ' 

1 0 ft/s~~ 
, --

ADI '¢ 
: 10 .. 

5° '. 
.. ' .- , '." . 

Q.5° /se~ ?o/sec 
" 

, .¢ 
. , :' ,,' 

MAP/COMPASS '¥ 10 2° 
-- : ~ " : 

0.5°/sec 10/sec 
,,' : 

" '¥ 

,I ::" 
.- ' 

instrument scale marking at the nominal 50ft hovering 'altitude • ,Finally, we have chosen 

thresholds on the rates of a display indicator equal to 1/2 the corresponding position 

threshold in accordance with previous work (Reference'21), 

5.2.2 FLIGHT DIRECTOR INPUTS - HOVER MODE 

The flight direct<?r has undergone many revi$ions th~oug~out the course of the 
; J. • \'. " . 

flight test of the CH-46C. Herein, the director form and valu~s for the flight dire,ctor 
• • • • 'L,. '-; . ' .', 

gains at hover are taken f~om ,Reference 12; Table 11 • Th~re are three flight director 

signals corresponding to pitch, power and roll commands respectively. The form of 

these signals is, (neglecting' the effErcts'df any additional, filtering), 
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, ,-'-

F D =.004 /).x + .04 V +.5 PI 
x x ·e· 

FD = .0057 AZ + .057 V + .115 V· 
Z Z Z 

(5-22) 

F D =.004 6 Y + .04 V +.5 PI Y . y. a 

In order to express the signal FD z in the requisite form of Equation .(~-20), we substitute 

for V using the equations of motion. The result is (approximately) 
, z . '. 

FDz '" .04 Sv + .0057 6Z + .04 e + .0515 V z - .068q - .85 Bc 

or, if we keep only the do~inant tEmris~ 

decision: 

FD '" .0057 AZ + .,015 V '. "1,.85 /) 
Z ,Z C 

• 

• 

The director rates would contain control rate (e) and white 
'noise terms, giving:,rhe to a complex modeling problem' . 
that could only be solved ~y adding "pseudo" filters in the 

. equations. 

The flight director signals are basically high frequency· in 
nature so that the value of their rate information in a low 
bandwidth hover task is small. 

The fli'ght directors ha)1e been designed so that· the pi lot 
acts essentially as a gain (especially at low frequencies) 
on the observed signal. This minimizes the pilot reliance 
on the rate information. 

(5-23) 

(5-24) 

•• ' t 

In order to i~clude the flight director~within the modeling framework we require a 

selection of threshold values and cost functional. weightings. The thresholds were 

chosen as 0.1 in for all three directors, corresponding to approximately 1/10 full scale. 
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As discussed in Subsection 3.2, including the FD. within the cost functional, in addition 
, I 

to the other terms, implies that one of the pilot's direct control objectives is to keep 

the FO. small. Based on an analysis of the fl i'ghf director instruments, and piloting 
I 

task, we choose as maximum deviations' 

(FD)MAX = ,6.2 in 

(FDz}MAX"= 0'.4 in'''' ' ' 
I' ' ' 

(~Dy)MAX =' ,?~2 i~ 

5.3 MODEL PREDICTIONS FOR CH-46 HOVER 

Having obtained state-space. 'equation,s for the vehicle'arid display dynamics, 

the ability of the pilot model to analyze the relationship between CH-46 hqvering per-
. '.. ~', t', . ~ .' . . ,;:: :~: "'. .. ••. , > ~:' :'. '. ..,~ " '; ,. :' ; 

formance and pilot workload is investi,gated. We consider pilot cQntrol performan~e for 
. . "',. "' '.' .' . .;: . :. .',' . . .' . . , . ~. '.: . 

the augmented (attitude command) system, both with and without use of the flight di-

rector signals. Various levels of total attention f from 0.3 to 0.8 are ossumed so that we 
, " " :,", ' ": ' ,', '.' ,.' ' ';c. c"" , . " ' , , ' 

may obtain the pe~f9nnanc~ vs. workload' curves'. T~e cost :functional output weight-
. .~. " 

ings, q ,are as given in the previous section. The control rate'weightings q' are ad-y. u. 
I I 

justed to give resulting Ineuro~motor"'lags'of.:rNi'" 0.1 sec., with a minimum value of 
" . ' ~ . '. 

quo = 0.25 allowable. This corresponds,to an assumed 'maximum pilot stick-rate deflec
I 

tion of 2 in/sec. The remaining ,basic parameters for thepil9t model are selected at 

their nominal aprioi-i values: 

T = 0.2 sec 
.:. .' { 

DYi 
= 0.01 (i .e., -20 dB) for all displayed ~ariables 

Pu .... 0.01, (';;'~O dB},for 011 controlvariClbles • 
I 
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5.3.1 MODEL PREDICTIONS - NO FLIGHT DIRECTOR CASE 

The, pi lot model is used to predict hovering performance with only primary 

instruments. In the flight tests, the pilots were unable to maintain the CH-46 ina 

hover under these conditions. Table 5-2 gives model results corresponding Jo an allo

c;at,i~n C?f attention of 0.3 to the longitudinal axis. The results clearly show that accu~ 

rcit~hover is virtual.\y imposs,ible :Iongitudinally,. One-sigma errors of 26 ft imply that 

about :40 percent of the time the helicopter is no.t over the pad. Instrument att~ntional allo-

cations are equally divided between map and IVSI, with some attention to the altimeter~ 

Thus, height information is obtained primari Iy through integrating the IVSI with cross-
. . .' . 

checks from the altimeter. 
I 

Table 5-2., Model ,Results.· Longitudinal Axis, f. = 0.3. 
. "I 

Instrument a· f f If 
, I c. c. C 

I I 

MAP, x ,25.5 ft 0.11 o .37 

ALTIM, z' 4.6' ft 0.,05 o .17 

ADI, a 10 < 0.01 < 0.03 

IVSI, Vz 1.3 ft/sec 0.12 0.40 

The following information relative to the longitudinal task has also been 

obtained from the model analysi~: 

• The total cost J(u) = 3.01 whereas the scanning cost (the 
part of J due to human observational processing noise) I (u) = 
2.86. Thus, over 95 percent of the hovering errors are 
due to the humanls own iniected random errorsi and only 
5 percent are directly ,attributable to the wind gusts. 

• The sensitivity of performance to higher attentional , 
(workload) levels is fairly low. Thus, f I = 0.5re-c, ong 
suits in only 12 ,percentimprovement.in hovering errors'. 
Consequently, even very high workload levels will 

. not resul t in satisfactory hover • 

',. 

tThe given f are accurate to +10- percent 'as in 'the vici'nity of the optimal. The cost 
c. -

functional J(u~ is relatively flat with respect to f • c. , I 
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• Rate info~ation obtained from the displays (i.~.; the -
derivatives of displayed quantities) is not very useful 
for control. Running the model wit~ only the four posi
tion variables ( 6X, 6z, 9, Vz ) gave attentional and 
performance results within 5 percent of Table 5-2. 

The results for the lateral axis hover- task, corresponding to an attention 

level of 0.3, are given in table 5-3-. 'As can be seen; 'hover performance is unaccept- , 

able ~ However, theattituae hold 'systems are: p'erfc)iTning as expected .. ' As '0 result,,' -

I ittle pilot attentio~is placed on the' rol'l and, cci{urse" indicators. ' 

" 

Table 5-3. Model Results. Lateral Axis, f = 0.3. c 
, .~. . 

Instrument a. f f /f 
I c. c. C 

I I 

MAP, y '19.4 " ",0.27 0.90 

ADI, f/> 1.40 0.02 0.06 
, .' ..... .... - , -" 

DG, 1\1 0.40 <(j .01 '0'" 04 
.- ", 

6 0.17 in. - ; -a 

6 0.05 in. - -r ,--

The results correspond with the pilot's inability to hover on the primary 
- .. -" '". . ~ 

status instruments. Although the model predicts a hover rms of 25'feet, this result is 
, , 

; 

under the assumption of a well-trained pilot. Thus, an experiment where only several 

runs are tried is likely to result in much larger errors. Finally, the model predicted 

hoveringe;ror rat~~ (V x~ V y) of 'ab~ut; 2 ~5'.ft/sec' indicate the slow drifting/divergence 

observed experimentally. ", 

5.3.2 SI NGLE AXIS MODEL RESULTS -,WITH FLIGHT DIRECTOR 

The results using the .. flight.director in,the. longitudinal task are given in 
. .. ~ . . 

Table 5-4 for a 0.3 level of attentiqn., There ,is,a,substal')tial improvement in rms 
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hovering error from 25.5 to 17 feet, accompanied by only slight changes in the perform-

ance of other variables. What is interesting, of course, is the model's prediction of a 

dramatic shift of attention away from the status instruments onto the flight directors. 

Table 5-4. Model Predictions Using Flight Director, f = 0.3. . c 

Instrument cr. fc • fc./fc ·1 1 1 

MAP, x 16.,7 ft -;:::0.01 <0.03 

ALTIM, z 4.7 ft 0.025 .0. 1 

ADI, e 0.70 <0.01 <0.03 

IVSI, V 1.2 ft/see 0.025 : 0.1 z 

FD 0.13 0.10 0.3 x 

FD 0.14 0.13 0.45 z 

A sensitivity a~alysis. was performed for the longitudinal axis by running the model at 

assumed workload levels of 0.3 to 0.7. The optimal attentional allocations to the 

fIj~ht directors are evident in all cases, as seen in Table 5-5. 

. . 

Table 5-5. Attentional Allocations for Longitudinal Task. 

Total Map Altim AD' IVSI FD FD x z 

0.3 <0.01 0.025 <0.01 -0.02 0.10 0.13 

0.4 <0.01 0.027 <0.01 -0.02 0.12 0.21 

0.5 <0.01 0.037 <0.01 _0.02 0.17 0.25 

0.6 <0.01 0.043 <0.01 -0.02 0.22 0.30 

0.7 <0.01 0.045 <0.01 -0.02 0.27 0.36 
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Figure 5-3 shows the sensitivity of the perfoni'lance measures (both scanning cost and x 

hover error) to workload level on the longitudinal task. The results show that a level of 

- 0.6 is required to keep the aircraft over the pad in the·x-direction 95 percent: of the time ~ 

The results for the lateral a~is are.giyen iii Table 5-6. RMS hovering error 

improves to 13 feet at 0.3 attention level with a total shift of attention to the flight 
, . .' . . .r· '. -, _ . . . . 

director. A sensitivity analysis of lateral axis perfoimance is shown in Figure 5-4 •. Fqr 

attention level.s greater than 0.15,.scanning cost is reasonable insensitive. For each at

tention level, the allocations among inst~uments remain the same - full attention to the 

flight director! .' 

" Table 5-6. Model Results. Lateral Axis with· Flight Directqr, fe = 0.3. 

In strument cr. J. f If 
I . I . c. C 

. I . 

.. .. 

M AP, y .. 13.0 
.. 

< 0.01 . < 0.03 

A 01, ¢ 1.1°: <0~01 . < O~03 

0 G, 1ft .. OA9 .. "< 0.01 < 0~03 . . . 

FO ' 0 .1 -in 0 .. 27+ . 0.9+' .. 
Y 

5.3.3 DUAL AXIS MODEL RE'SULTS - WITH FLIGHT DIRECTOR 

The curves of lateral and longitudinal cost, I(u), vs attentional allocation 

can be used to determine performance for the combined task given a.level of total con

trol workload fc = f~,lat + fc~long· Thus for a given fc the optimal fc~lat and fc, long 

are determined to minimize 

(5-25) 

This minimization is accomplished he.re using'a .simple one dimensional search procedure •. 

. It could also be done via computer by constructing a state space representation for the 

entire two axis task. In this example, the first approach is easier • 
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The results are shown in Figure 5-5 which represents the overall predictions 

of the model for the hover task. The following comments are pertinent:' 

. '. i 

• 

• 
• 

The optimal attention to the iateral task fc*l~t is 0.15 .... ·0.2 
or in the vi'cinity of the II knee II in Figure S-4 as might be 
expected. 

At the optimal point (fc *1 t' f *1 ) the RMS hover errors 
. h' 5 ' a c, ong 

(J - (J to WIt In percent. x y . 

The sensitivity of tQtQI I(u), .in the vicinity of the optimum 
is extremely low. Thus laterF'I attenfion could be increased by 
0.05, while longitudinal attention is decreased by 0.05, with· 
little change in I(u). > .' 

• The "average" hovering 'error 

"avg = ( a} : "/ ) 1/2 

shows the same relative insensitivity·os does I(u). How
ever; there is a fairly sharp trade-off between O'x and O'y. 

. (5~~6) 

• Thus, it is quite likely t~at different pilots will adopt dif
ferent operating points with respect to lateral vs. 10ngitIJclinai 
trade-offs. Total performance J(u) is insensitive here but dif
ferent distribution of errors is to. be expected • 

. ' It is possible to investigate the propability of hovering within a circle of 

. radius R for different workload levels. Since we assume Gaussian statistics, the proba-

bility. d~nsities of x and y hover errors are, respectively, 

2 2 
1 

-x /2a 
p(x) 

x = ~ 

ax~ 
(5-27) 

22 
1 -y /2d' 

p(y) = e y . 

ay~ 
. . 

. 2 2 
Assuming (J ,.,. a x y 

= a2, it is ~as~ to show that' the probability x
2 + y2 < R2 is 

(5-29) 
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Thus, the probability of being within a 25 ft radius at an}'· time is easily found for any 

given "average" hovering error. Several probabilities are noted in Figure 5-5. 

We see that workload levels of 0.7 - 0.8 are required to maintain the aircraft 

over the pad 80 to 85 percent of the time. Thus at this criterion level on performance, we 

find that the workload 'Ievel is barely acceptable! The· hover task can be accomplished~but 

no time is left for monitoring the status instruments. (Recall most attention goes to the 

flight-directors). If we require a tighter hovering performance, the model predicts that 

the pilot will be overworked. At lower workload levels (e.g., 0.6) the aircraft is over 

the pad only 75 percent of the time. 

The conclusions of our moCfEiling effort thus indicate that 

• Hovering cannot be satisfactorily accomplished uSing the 
existing status display. .' . 

• The flight directors make hovering possible with high 
workload . . 

• Virtually full control attention is given to the flight 
director needles 

• There is little or no remaining pilot capacity to monitor the 
status instruments. 

These conclusions are very much the same as the&e from the fI ight experiments. 

tWe consider ft - 0.8 to be full capacity • 
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SECTION 6 

CH-47 RESULTS 

," ~. -;-t 

'The synthesis and a\naly~i's techn ique~ described 'in the preceding section w~re 

appli~d to the Langley CH-47 tand~m rotor helicopter, which will be used as the flig'ht 

're'search aircrafffor the VALT prqgrqm. The' numerical resul ts presented in this section 

~re'lirriit~d' to the longitudinal axes due to time constraints an'd unc~rtai~'ty in the "; 

la't~r~i' direc:tio~a I'st~biiity derivaHve dat~ .. 'T~6fl,ight' co~ditions we~e an~lyzed to 

indicate th'1 differences in performance ov'er the exp~ct~d flight environment:' 

• hover (sea level) 

- - • approach '(1000.'ft/min -de'scent at 60 knots) 
I ~ • .,: '. • '. 

6.1 CONTROL AUTOMATION LEVELS'" 

As discussed previously in Section 4, each of the control channels of the 
i 

helicopter has ~hree or five possible levels of automation, shown i~, Table 6-1. 

Table ~-1. Levels of Control Channel Automation. 

Forward Vertical Lateral Directional 

6e 6c ~a Or 
c c c c 

qc V , Pc r 
z c c 

9c 
h ¢c Wc c 

V' V 
x~ .. Yc 

-
x Xc c ' , -, 

" . 
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The total number of automation levels from Tabl~ 6-1 is 5x3x5x3 = 225. Obviously it 

would be impractical to analyze all combinations of automation levels, and indeed 

many of the combInations in, Table 6-1 w<?u,ld not be practical system~. ,<;:onsequently, 
- ,. • j • • '. • -. • .' 

several levels of control augmentatio" were selected to p,erf?rm the control/display . 
. : \, .'. . . . : . 

analyses. Table ~-2 shows the. control chan.nel commands for, each,of.theeight selec;ted 
: • '. : • I . I •• ,~. ., ~....,. ... '" • • • ". 

systems. These ~ange from ~he completely mc;ml!al, basic v~hicle (Sys.tem A) to a fylJ 
.' .' -. .- L. \ I " • • 6 '_" 

position feedback system for automatic hover (System H) •. N.~te that for th~ longi,tudinal 
.. '. ',." '.:' ". -".' ". '. ' ... 

axes, Systems D and E are, identical. 
. ~.', '. .' I.' . 

Table 6-2. Selected CH-47 Automation Levels .,,: 

.. , 
Co~tr'ol Channel Command 

.. 

~ystem 
Forward Vertical', ' Lateral ."Direc,ti.onal .~ 

,A 
°e °c 

' , 
" 'fJ ',:, .. '6 , a ' r 

", 

5~ 
" 

; '. B q' 
, ' , p r 

C ' ~ 9;- 6 ' ¢' , r 
c 

" D e' V ¢' r' 
" z " " 

, 
, -

E e V z ¢ W : 

F e h ¢ W 

G V h , V ~ x y 
: 

H x h y W 

The quadratic synthesis techn ique described in Section 4 was used to obtain 

the closed loop longitudinal system matrices for each of the systems in Table 6-2. As 
.. . . . - -' . , 

discussed in Section 4, the weighting functions used in the quadratic synthesis can all, 
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be related to the specifications on the maximum allowable pitch acceleration and 

vertical acceleration. For the CH .. 47, the maximum state and control variable excur

sions which define the weighting functions'are shown in Table 6-3. 

: ~" ~~. 

" 
", ; 

, " 
' .. '" 

System 

A 

B 

C 

O)E 
. ,,;:; "'F,: 

G 

, 
'" 

,H, , .. 

" , : , 

'A', 

" 

. , 

: 

,-

" 

Table 6-3.: Weighting Functions for Longitudinal 
CH-47 Automation Levels • 

" , .' 
State Variables - Hover and Approach , 

" -
x z e ':Vx ' Vz 

(ft) (ft) (rod) (ft/sec) (ft/sec) 

- - - - -

- - - - -
0.435 

; .' - - - -
.. -.. 0.435 ! - ' , 7.5 

'!'. 

" 
.. - .. ~ ~ . 30.0. ;0'0435 ' - -, ' 

- 30.0 - 28.0 -
84 •. 0 ~O .• O - - -.. " ." 

.. : 
'Control Variables: Systems A-H 

, 
t 

.. 

FI ight Condition °e (in) 

Hover 2.19 

Approach 2.45 

6 - 3 

q 
:", 

(rad/sec) 

-
0.435 

'. 

-
;'- , ' 

., -
-
-, 

6 c (in) 

0.336 

0.404 



Recall that the dynamics of th.e system to be controlled, by t~e pilot are 

given by 

. x = Ax + Bu + Ew (6-1 ) 

where the state vector x consists of the vehicle states shown in Table 6-3 augmented by 

shaping states for the disturban-c~s·.· From theCH-4¢ re~ults·it was c~ncluded trat a 

first-order wind gust in both the forward and vertical directions provided a sufficient 

disturbance input to the system •. C6~sequentl y, the sys tem_ state ~ in Equation (6-1) is 

augmented by tWo wind gust velocities given by 

w = -w /'1' + w gx gx x x 
. (6-2) . 

w = -w /'1' + w . gz gz z z 

Again from the CH-46 results the time constants 'I'x and 'I'z were each selected qs ten 

seconds, and the power of the white driving noises (wx ' wz ) were chosen to give an 

rms gust velocity of 3 ft/sec. 

The 9uadratic synthesis techn ique was appl ied for the ~bov~ weightin~ func": . 

tions at hover and appro<;:lch to generate the closed loop .system matrices for Systems B 

through H (the wind disturbances wer'e not included in this process). The resulting " 

closed loop dynamics for each system are shown in Figures 6-1 th~ough 6-7. 

6.2 DISPLAY LEVELS 

The optimum control pilot model was used to determine the attention alloca-

tions and system performance at the information level and at the display element level 

for each of the systems described previously. Without flight director signols, the 

control performance metric w~ights quadratic terms for each of the basic aircraft states 
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(excluding gust states) and the pi lot control input rates, as discussed in Section 2. 

Recal I that the displayed information vector presented to the pi-lot is 

y = Cx + Du (6-3) 

For the information level and the display element level without fl ight director, the 

matrices C and D are shown in Figure 6-8. Desirable maximum allowable values (2 (]) 

arepresented in Table 6-4 for each of the basic vehicle states and· for th~ control' rates. 

Table 6-4 also shows the indifference thresholds for each of the displayed states. As 

discussed previously, these are taken to be 1/4 of their respective maximum allowable 

values in the cost function~-I ~ 

Flight director algorithms were obtained for each automation level/flight 

conditi"an as described in Sectiot:l 4. The flight director commands were simplified by 
, - . 

negl~cting cross coupl ing terms to give the following general forms: 

FD = K x + K e + Ky Y + K q x x e x q x 

-FD = K z + Ky Y z z z 
z 

Table 6-4. Control Cost Weighting Functions and Indifference 
Thresholds for C H-47. 

Maximum Yalues for Indifference Thresholds 
Yariable Units Cost Function 

Hover 60 kt Desce~t Hover 60 kt Descent 

x ft 5. 25. 1.25 6.25 
- -

z ft 5. 25. 1.25 6.25 

e deg 1. l. .25 .25 

Y ft/sec 1. 2.5 .25 .625 _ 
x , 

Y ft/sec 1 • 2.5 .25 .625 z 
q deg/sec- ~ 0.5 0.5 .. ·125 .125 

0 in/sec 2. 
. -

2 • ----- -----e 
() in/sec 2. 2. ----- -----c 
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The fl ight director signa I rates were obtained by simply differentiating Equation (6-4) 

and substituting from Equation (6-1). The effect of the flight director signal presence 

on the pilot strategy is taken into account by including the flight director signals in 

the control cost functional. The maximum allowable values used to weight these sig

nals in the cost functional are obtained from the maximum allowable excursions of the 

pos i t i on s to tes, e. g • , 

(6-5) 

Finally, the indifference thresholds for the fl ight director signals are obtained in the 

standard 1/4 of the associated maximum value, i.e. 

(FD ). = (FD) /4 z min z max 

The resulting flight director algorithms, indifference thresholds, and control cost 

weightings are shown in Figures 6-9 through 6-15 for the seven automation levels. 

6.3 PROGRAM PIREP 

(6-6) 

Program P iREP is an interactive program that predicts human operator per-

formance and response chara~teristics in complex control tasks involving varying levels 

of control automation and pilot monitoring. The human operator model is based on 

optimal control and estimation theory coupled with a mathematical description of the 

humanls limitations. The basic underlying assumption is that the well-motivated, well-

trained human operator behaves in a near optimal manner, subject to his inherent 

limitations and constraints and his control task. The program subroutines are written 

in Fortran IV and have been operated on PDP-lO, IBM 360-65 and CDC 6600 computers. 
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The inputs to the program include the vehicle description (system dynamic~, 

input disturbances and displaye~ variables), task description (cost funCtional weight-:

ings), human description (subjective weightings, neuromotor time constants, time 

delay, motor noise and observation noise), and the available capacity for control and/ 

or monitoring tasks. The outputs include the state, output and control variances; the 

optimal allocation of pi lot .9ttention to the prescribed displays; control and monitoring 

performance metrics; pilot describing function and remnant spectra; and the state, 

output and control power spectra. 

Figure 6-16 summarizes the important parameters of program PI REP for this 

analysis. The seven control systems, four displays, two fl ight conditions and varying 

control attention levels required over 200 runs of program PIREP. The following two 

subsections present selected results obtained with program PIREP for the control and· 

monitoring models. 

System Dynamics 
(Automation Level, 
Disturbances, etc.) 

Display Moc:lel 
(Elements, 
Thresholds, etc.) 

Total Attention 
(Con tro 1/ 
Monitoring) 

---1·1 PIREP 1--

Attention A"ocation_ 
(Control/ 
Mon itoring) 

Performance Metrics-
(J , J , Gradients) 

c m 

RMS Predictions 
(State and Control) 

Figure 6-16 •. Principal Inputs and Outputs of Program PIREP. 

6.4 CONTROL MODEL RESULTS 

This subsection contains compreh~nsive results obtained using program 

PIREP to analyze the control performance of the aforementioned control/display 

configurations selected for the CH-47. For the reader's'convenience, it is sl1ggested 

that Table 6-2 on page 6-2 be marked for convenient reference during the ensuing 
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discussion. The pilotls total allowable attention to the longitudinal task was assumed 

to be 0.6, leaving at least 40 percent of his time for control/monitoring of the lateral 

axes and for miscellaneous duties (communications, etc.). 

6.4.1 ATTENTION ALLOCATION VS WORKLOAD 

Figure 6-17 depicts the relative attention (in percent of total control 

attention f ) paid by the pilot to the display elements for the unaugmented helicopter c 

(System A) with only situation information. At both flight conditions, most of his 

attention is on the pitch attitude indicator. From hover to approach, some of his 

attention is shifted from attitude to the position displays. For this simple control/ 

display configuration, h is relative a lIocation of attention remains essentially constant. 

For comparison, Figure 6-18 shows the relative attention allocation for System A with 

a full fl ight director. Now the forward fl ight director is the most important instrument, 

followed by the pitch indicator; the vertical flight director is significant only during 

hover. For this configuration, the pilot spends a lower percentage of his time on the 

x flight director, and more on the attitude indicator, as his total available control 

increases. Figure 6-19 shows the predicted rms system performance for the unaugmented 

system without a flight director. In general, the performance improves as the pilot 

spends more time on the longitudinal control task. The hover errors are consistently 

lower than those during approach, reflecting the cost weightings of Table 6-4. 

Figures 6-20 through 6-31 compare the fractional control attention alloca

tions for the other six automation levels with 'no flight director and with full flight 

director. In general, as the control system automation increases, the pilot is able to 

direct more attention to the vertical information and thereby improve the total perfol"m-

ance cost (e.g. Figures 6-28 through 6-31 )., Also, as his total control attention 

increases, he tends to spend sl ightly less time on the fl ight director signals and more on 

the raw data. 
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6.4.2 SYSTEM PERFORMANCE VS WORKLOAD 

Figures 6-32 through 6-35 present the overall performance cost variation 

with workload (e.g. control attention) at hover for each control/display configuration. 

Increased automation improves performance for a given workload, regardless of the 

display prqvided. Comparison of these figures shows that the vertical flight director 

alone helps only system GiS performance, while the forward flight director improves 

all systems' performance. However, the full flight director gives only a marginal 

improvement over the x flight director by itself. 

Similar results are obtained during the approach, as shown in Figures 6-36 

through 6-39. In. nearly 'all configurations the overall performance is better during the 

approach than at hover. However, the performance of System H (full position feedback) 

is approximately the same for both flight conditions. Moreover System H shows very 

little sensitivity either to the flight director level or to the total control attention at 

both flight conditions. This resu'lt is as expected, since System H is essentially a pure 

automatic system. In general" the more automated systems become considerably less 

sensitive to workload variations.t 

6.4.3 PREDICTED RMS PERFORMANCE 

Figures 6-40 and 6-41 show the rms position and attitude error contributions 

to the overall system performance, at a "comfortable" workload of 0.4. The position 

errors are considerably lower at hover than during approach, while the attitude errors 

are nearly the same; this reflects the higher penalties on x, z in the performance metric 

at hover (Table 6-2). In general (except System D), the errors tend to decrease with 

system automation and the flight director.also reduces the errors . 

. tAr. exception of these general izations is System D, whose predicted performance is 
extremely good during approach and very poor at hover. The erratic results are not 
yet fully understood, but it appears that numerical difficulties with this system are 
producing two local minima in the optimization algorithm. 
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6.4.4 ATTENTION ALLOCATION VS CONTROL AUTOMATION 

Figures 6-42 and 6-43 compare the fractional control attention for the various 

levels of control autc;>mation, with no fl ight directors and with full fl ight directors 

respectiv~ly, and at a "comfortable" pilot workload (fc = 0.4). These charts indicate 

the comparative importance of the instruments as the flight conditions change and/or 

as the system automation changes. For example, in Figure 6-43 the raw position 

instruments are used infrequently in all sYstems, particularly during the approach. As 

another example, adding pitch rate feedback (System B) and pitch attitude feedback 

(System C) allows the pilot to shift some attention from the attitude indicator to the 

vertical instruments (z and FDz), thereby improving his overall performance .. 

6.4.5 ATTENTION ALLOCATION VS DISPLAY SOPHISTICATION 

Figures 6-44 through 6-50 show the change in fractional control attention with 

display sop~istication for each system at fc = 0.4. They illustrate the importance of the 

available instruments at a fixed workload for each level of control automation. The' 

i'nformation. level results demonstrate the importance of the rat.e informqtion from'each 

·instrument. It is interesting that although the pilot spends a large f~action of his 

available attention to the z fl ight director (when provided), this does not achieve a 

significant improvement in performance. 

6.4.6 CONTROL/DISPLAY CONFIGURATION EVALUATION 

To evaluate the various control/display configurations, the workload for 

each can be normalized to a specified minimum acceptable performance. The 

performance cost for longitudinal control of any system is defined as 

6· 

J = L: 
p 1 

(6-7) 
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where 0 are the predicted rms state errors (x, y, a, etc.) and (x.) are the corre-
xi. J max 

sponding cost functional weightings given in Table 6-2, which correspond to 20 values. 

If we specify the minimum acceptable performance as 10 errors in all states, i.e. 

(6-8) 

. the maximum allowable value in Equation (6-7) is: 

(J ) ::: 6(1/2)2 = 1.5 
p max . 

(6-9) 

For the longitudinal contrQI task, the maximum capability for both control and monitor

ing is abolJt 0.6, and a "comfortaple" value for control is fc - 0.4. By defining ane 

acceptable workload to be ± 0.1 from the cpmfortable level, t~e5ontrol/display con

figurations can all be classified into three categories (unacceptable, acceptable, 

excellent) as shown in Figure 6-51. 

Applying this normal'ization technique to the candidate control/display 

systems for the CH-47, we obtain the performance evaluation shown in Figure'6-52 
- . 

for hover and approach. Besides·quantifying the well-known conceptual plots of 

control automation vs display sophisticationt , Figure 6-53 provides a great deal of 

information ()n the various configurations. For example, System C.·is acceptable in 

both flight conditions if'atleast an x flight director is provided. However, if ,the 

fl ight director should fail, the perform~nce would b~ unacceptable in the hover 

condition. 

'-,' 

t'f the System D results are neglected, it is possible to sketch contours of constant , 
workload as functions of control automation and display sophistication in Figure 6-52. 
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6.4.7 FIXED-GAIN FLIGHT DIRECTOR 

The flight director algorithms presented in Subsectiqn 6.2 were designed spe~ 

cifically for the·given flight conditions. This implies the flight director computer would - - .. 

have to vary all the gains as the flight conditions change •. As an alternative, a preliminary 

anplysis of a fixed-gain flight dir~ctor was conducted. The technique used was simply 

to average the "optimum" flight director algorithms for hover arid approach. The control 

cost weightings and indifference thresholds are based on the maximum permissible position 

and attitude errors, which are the approach values. The resulting flight director signals 

are shown in Figure 6-53 for Systems C and G. 

Figures 6-54 and 6-55 compare the respective system's performance at hover and 

approach. For comparison, the corresponding performance with no fl ight director and 

with the optimum (variable-gain) fl ight director is shown • Obviously, the optimum fl ight 

director is sign ificantly better them the fixed-gain flight director for both systems. For 

System G, the fixed-gain flight director performance is about midway between the optimum 

flight director. and that with.'no flight director~ However, in SystemC, the fixed-gain 

flight director is no better than having no flight director at a". 

Obviously, it is impossible to draw general conclusions from this brief exam

ination, but it does appear that sc;>me for~ of flight director gain adjustment or sensitivity 

switching may be required to meet the desired system performance throughout the flight 

regime. 
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6.5 MONITORING MODEL RESULTS 

Having established the necessary control workload and corresponding per-

formance, we can turn to the pilot's monitoring capcibility. Referring to Figure 6-51 

the minimum control workload is determined by J = 1.5. If this is less than f = 0.6, 
p c 

the difference between 0.6 and f is available for monitoring the status instruments, as 
. c 

described in Section 2 • Applying the monitoring model described in Section 4 to each 

acceptable system, we obtain the monitoring performance shown ·in Figure 6-56.· It is 
, 

interesting to note that monitoring p~rformance does not a ',,:ays improve with increased 

automation. However, looking at the combined control and monitoring performance, 

Figure 6-57, we see that increased automation generally does improve total perfor-

monee. 

,. 
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., 
SECTION 7 

DISPLAY CONCEPT AND FORMAT 

AI.though no unique transformation from analytically determined information 

requirements to display layout is available, there are. nonetheless a number of important 

design principles which must be taken into account. This is of particular importance 
. . 

when deal ing with integrated displays and with the problem of VIOL control. 

Some of these principles, outlined in' Reference 20. and reiterated below, are 

generally useful in the design of 'flight control displays •. They are not in any sens~ 

fundamental rules, and individual display situations may call for variations in their 

application. These principles are supplementary to the generally accepted conventional 
.' . 

display criteria relating to instrument design, including location, size, contrast, 
, ' 

quant.ization, cinddisplay-control compatibility.' 

• 

• 

• 

Operator Centered and Oriented Display';' This is an extension of the 
inside-out display principle for integrated displays and favors a pre
sentation with the aircraft position and orientation fixed in the dis
play and the other pictorial information (horizon, gl ide-slope, hover 
point; velocity impact point, altitude reference, etc.) moving with 
respect to this reference. 

Geometric Real World Compatibility for Pictorial Displays - Although 
the integrated display is not in general a contact analog (and 
typically includes command and/or situation information not present 
in the VFR view), such pictorial information as is present should be 
compatible with a view of the real world situation. The integrated 
display is at its best when the information contained in it is perceived 
by the pilot as a single complex picture giving all the attitude and . 
position information required, rather than as a densely packed code 

. through which ~e can successively determine the aircraft flight path • 

. "Status at a Glance" for Situation Displays - In keeping with geometric 
real world compatibility, the essential elements of the display must 
be clearly delineated by size, shape, or color and coordinated with 
respect to one another so that the status of the aircraft, especially 
in unusual attitudes, is immediately obvious and does not require. 
element decoding. . 
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• Predictive Capacity - In addition to indicating the current state of the 
aircraft, the integrated display must readily show the dynamic situation 
so that the fut}Jre state can be easily surmised. This kind of information 
is necessary for lead generation in fast loops such as attitude control and 
for planning maneuvers in guidance or coli ision avoidance. Display 
quickening, explicit rate symbols, display prediction, and historical 
trail markers may all be used to this end, and should follow the practice 
of derivative i~formation "leading" the variable on the display. 

• Geometric Sensitivity and Scaling - The symbols and elements in on 
integrated display must move for enough and fast enough so that the 
pilot will be able to notice the motion and estimate its magnitude in 
perform i.ng -the appropriate control response. Maxi mum range and 
desired pilot gain in each loop must be considered in scaling the integrated 
display elements for various phases of flight. 

• Use of Digital Information Where Required. --An exception to the pictorial 
compatible principle is in the display of information which is slowly 
varying and which must be read accurately over a large range. In this _ 
case, the judicious use of some digital presentations on the integrated display 
is appropriate. As a simple example, altitude may be displayed digitally; 
although altitude deviation from a glideslope is best handled by analog 
motion of I ines in the display. The -amount of digital information should 
be kept as small as possible, displayed only when necessary (perhaps on 
pilot demand), be legible,and contain as few digits as absolutely required. 

These design principles Were adhered to in the development of straw-man display fonnat 

concepts for-the implementation of Systems C and G designed and analyzed in the 

previous sections. 

7.1 STRAW-MAN DISPLAY CONCEPT - PANEL LAYOUT 

The general layout of the display panel is illustrated in Figure 7-1. Details 

of the AD I and HS I di ffer between Systems C and G. However, si nce both systems assume 

dependence upon CJ flight director, they are treated as integrated command displays 

rather than situation !ndicators. Although a full complement of flight instruments is 

anticipated, inthis discussion we will concentrate only on the instruments essential 

for the fl ight control functions considered in the study and will therefore I imit the consid

eration to the quantities displayed on the ADI, HSI and altimeter. The assumption is 

made that the pilot derives vertical rate information from the altimeter rather than 

from an IVSI in both Systems C and G. 
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7.2 ATTITUDE DIRECTOR I NDICATOR (AD!) 

In SystemC the pilot's control task consists of primarily following the flight 

director commands for aircraft attitude and collective pitch. The ADI format shown in 

Figure 7-2 is based on the well accepted moving aircraft symbol flight director and 

artificial horizon ball with modifications for VTOL applications. Indicated and 

commanded roll angle are scaled one to one. Pitch angle is scaled to permit display of ~5° 

of pitch on the attitude ball permitting the pilot to resolve changes in pitch angle of 

less than 0.25 degrees. The turn rate indicator at the bottom of the ADI has the 

. capability of including a commanded turn rate independent of the commanded roll angle 

. if so desired. It also indicates lateral acceleration in the conventional manner. The 

additional indicators on the right side of the ADI are for use in the commanded collect

. ive for independent control of altitude. Consistent with the other elements of the 

flight director system is apurs~itdisplay with commanded and actual collective stick 

indicated on either side of a fixed scale. 

The principal difference in the ADI format for System G is the attitude informa

tion displayed on the right side of the instrument. The ADI as used in System G becomes 

strictly a secondary monitoring instrument for attitude and turn rate. The flight director 

symbols are normally not displayed, and as envisioned in'$ystem G, not utilized. The 

collective indicator on the right side of the ADI in System C is not required for System 

G. 

7. 3 HORIZONTAL SITUATION INDICATOR (HSJ) 

The HSI is discussed first for System G where it is used as one of the two ' 

principal command instruments for the pilot's direction. In System C the HSI is used 
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as a secondary situation indicator only while the pilot fl ies the vehicle using attitude 

commands from the ADI. Consequently the HSI for System C will be simpler. 

The HSI format shown in Figure 7-3 is a heading-up mov.lng-map display with 

command information on required x and y velocity. The aircraft symbol in the center 

of the display is surrounded by range rings of a variable scale which may be set manually 

to a pre-selected sensitivity indicated by the number of feet for the first ring, or in an 

automatic mode. The automatic mode:selects the scale sensitivity which is the highest 

possible one that does not place the landing pad off the screen. The landing pad indicator 

which is used principally in the final phases of descent does not move entirely off' 

scale when a range sensitivity too great to permit it to be displayed is selected. Instead 

it is moved to the edge of the display and indicated with a semi-circle rather than a full 

circle, to indicate the relative direction to'the pad. The compass rose fixed to the 

no ving map indisates heading in the conventional manner for System G. A command 

heading bug {~ also available, as a supplementary fl ight director output. 

The pilot uses the HSI in System G principally as a horizontal v~locity 

command display. The command velocity is shown as an open arrow with origin at the 

aircraft symbol, indicating both magnitude and direction of the commanded horizontal 

velocity ~ Full scale on the command velocity vector is taken as 100 kt. The actual 

velocity vector indicated by the solid arrow with origin at the aircraft symbol is the 

quantity directly controlled by the pilotls control stick in System G. To follow the flight 

director commands the pilot must line up the tip of the actual velocity vector with the 

command velocity vector. In this pursuit display the accuracy with which the align

ment can be resolved is of the order of 2 percent of full scale or approximately 3 ft/sec 

wh ich is greater than the assumed indifference thresholds for velocity. Small errors in 
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velocity matching, however, are detected by the rate of change of the track position 

error crosspointers. 

When the aircraft is within 50 ft of the commanded position for hover or 

descent the crosspointers indicate cross-track and along-track position errors. Each 

ticmark is a nominal error of 25 ft. The crosspointers are not on the same scale 

as the movingma~ range' rings and are used for ·a fine error adjustment on velocity 

control. They are consistent with the other flight director information in being 

a "fly-to" display 'in which the aircraft symbol is flown towards the intersection of the 

crosspointers in order to null the error. Drift of the crosspointers is the most sensitive 
. . 

indication of a lack of perfect al ignment of the command velocity with the actual 

velocity. 

7.4 ALTIMETER 

In System G the altimeter is one of the principal fl ight director instruments' 
'. . . 

enabl ing the pilot to use the vettical command to·achieve the altitude hold or altitude 

track required by the flight director. At the same time, however, the altimeter must 

serve as an accurate situation indicator to indicate actual altitude for monitoring pur-

poses in both Systems C and G. The solution to these conflicting demands of ral)ge 

and precision is a type of combined digital and moving tape display as illustrated in 

Figure 7-4. 

The first three numerals are a digital display giving altitude in hundreds of 

feet. To the right is a moving tape giving altitude to the nearest foot. The portion 

of this tape centered within the viewing window is the actual altitude at the mid-point 

with a visible range of ± 10ft. This accuracy of altitude information is available from 

the radar altimeter in the hover case. To el iminate diff~culty of reading the moving 

tape, the information will be filtered at a corner frequency of about 1 Hz prior to being 
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displayed. Altitude rate is not assumed to be displayed explicitly on an IVSI in these 

systems, but rather is assumed to be determined by the pilot impl icitly from the al timeter. 

This is particularly easy for low altitude rates using the moving tape which moves upward 

or downward at a speed proportional to ~Ititude rate. (Transfer of a numeral through the 

moving tape window in one second, indicates a 20 ft/sec ascent or descent rate" Drift 

of less than 0.25 ft/sec will be 'observable). 

The commanded altitude is indicated in System G in two ways :by a 

numerical six-digit command' which is set either manually for an altitude hold or by the 

fl ight director system for cont'rol descent, and by a command altitude bug, which moves 

up and do,,:,n to the righ,t of the altitude moving tape. The command bug is at the same 

scale as the moving tape altimeter when the commanded altitude is within +10 ft of 

the actual altitude; ~owever, the,command altitude bug moves over a vastly reduced 

scale (approximately 100 ft per division) when the commanded altitude is more than 

10 ft abov,e or bel,ow the actual altitude. ' The predictive altitude symbol shown by 

a solid circle is controlled dire~tl.y by the vertical control st,ick in System G. The 

pilotls task is to place the predi ctive altitude indicator at the same point as the 

command altitude bug. In the situation indicated in Figure 7-4, for example, the 

pilot would press down on the vertical control stick to move the predictive altitude 

indicator down to the level of the command altitude bug which is indicating a commanded 

altitude of 00225 ft. The predictive altitude and command altitude indicators would 

both move up unti I they are aligned wi~h 00225 in the center of the tape window. 

The altimeter layout is the same for System C with the exception that the 

predictive altitude indicator, command altitude bug and command altitude numeric 

display are not present. 
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. SECTION 8 

. SUMMARY AND CONCLUSIONS 

This se~tion presents a summary of the principal accomplishments achieved 

during this effort and a revie~ of the most significant results. The next sectio~ will 

contciin some 'suggestions foradditional research and experimental investigCltions based 

on the study resul ts • 

The primary accompl ishment of this investigation has been the development 

of a systematic design methodology for pilot displays in advanced VTOl aircraft for 
.. 

commercial operations. This design approach accounts for various levels of control a~to-
. . 

mation and display sophistication. It is based on the optimal control model for the human 

operator, but includes several significant extensions in the state-of-the-art ~f pilot model-
. . . 

ing. An explicit attention allocation procedure has been established which determines 

the optimal division of the pilot's total attention between monitoring and control ta~ks, 

and among the various displays available to him for each task. 

The design methodology separates the model into three levels of detail. At 

the lIinformation level, II all of the state variables are assumed to be perf~ctly displ,ayed 

to the pilot. Thus, the pilot .. has perfect knowledge of each state variable and his al-

location of attention among these indicates their relevant importance in the ideal 

situation. At the display element level the effects of pilot indifference thresholds are 

introduced, and the pilot's ability to detect both· position and .rate from a given dis

play element is included. At this level the relative importance of each display ele-

ment is determined, and a more realistic estimate of the overall system performance 

is obtained. Finally, at the IIdisplay. format level ll realistic performance estimates 

. due to display thresholds, maximum deflections, instrument noise, scan frequency, etc. 

are determined for an actual display format which has been designed from the display 

element resultso 
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The design methodology includes a model for simultaneous monitoring and 

control, which is based on the premise' that the pilot firs't attempts to control the air

craft to a given level of performance t and then uses any additional capabil ity for 

monitoring st':ltus information and/or automatic system p~rformance. The model uses as a 

metric for Go~tro! performance a qua~ratic function. of the state errors. The control work

load metric is the pilot's total control attention to all the displayed elements that is re

quired to achieve a desired level of system performance. The model optimizes the 
, . 

control performance metric by allocating his total control attention among the available 

displayed elements. Then his available attention for monitoring is determined as the 
, ' , 

difference between his total capacity and that required for control to the given perfor-
, , ' 
I • : " 

mance level. The model next determines the optimum allocation of monitoring attention 
. . " . ~ 

,among the available status displays and the overall monitoring performance metric which 
',. . '.' :' " '. . ':., !. ' .. 

is a quadratic index similar to the c~ntrol performance metric. , 

In summary, the VTOL display/control, design;lTlethodology is: 

• Determine (Xi) and (Jc) from missiqn requirements. 
, max' 'max· ,;. 

• Select candidate control systems. , 
. . , ~. 

• Calculate Jc vs fc at the information level for each control 
system' {include director/steering commands}. ' 

• Choose display element;. 

: • Calculate J vs f 'at the display element. c c 

• Determine f m = fTOT - fc and J m from monitoring model. 

• Selec't display/control system. 

• . Select display format candidates. 

• Determine JCt Jm vs fc for each format: 

• Select display f6rma't. 

A computer program entitled PIREP has been developed to implement the 

extended optimal control/monitoring model for the pilot. It can be used at the informa-
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tion level, at the displayelementlevel,'or at the display format level, to determfn~ 

the optimal, allocation of pilot's attention for- either monitoring or control, as weir as 

the associated system performance. The principal inputs of PIREP are the system~dynamics 

(automation level, external disturbances, etc.), the display model (display elem'ents, ' 

threshold.,etc~):, and the tot~J attention (con~rol/monitQring) • .The primary outputs of 

PIREP are the optimum. attention allocat.ion ,(control/monitoring), the system pe~formance 
, , ' 

metrics (Jc ' ~m' ~ost gr?dients)~ and the rms'predictions (state, display, control). " ' 

The extended optimal control model for the pilot 'was validated by attempting 

to reproduce flight results obtained by NASA/LaRC with the CH-46 tandemirotor heH-

copter. Descriptions of the CH-46 model. .. foUowing control system, evaluQtion display 

panel, and the flight director algorithms were obtained from NASA publications. The 

optimal control model was exercised at the display format level for a hover fl ight condirion 

and the results were compared with I imited flight data. Both the analyti cal and experi

mental results show that the p~lotcould not, adequately hover without the flight director, 

but that he had very I ittle difficulty wi.th the' fI ight director. 

A flight director desi~n technique using quadratic synthesis wasdev,eloped 

as a straightforward means of generating flight director algorithms. These algorithms. 

were designed to relate to the pilot task objectives, to minimize his workload and/pr 

improve his control performance, and to satisfy the pilo.t's desired goal of b,ehaving ap

proximately as a gain and time dela,y, The flight directo~ ~ignals'are obta~ned as line9r 

functions of the system states as a direct fallout from. the optimal control model. When 

applied to the CH-46 helicopt~r, the flight director design technique pr.oduced nearly 

identical time constants to those of the empirically deterO]ined flight director algorithms 

used by NASA/LaRC. 

A similar approach using quadratic synthesis was applied to determi'le,'flight 

,control automation levels 'for the hel icopter. By appropriately specifying the control 
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and statc;l y.teights in a, quadratic performar)ce index, various lev~ls of automatic, fee a
back. control systems,~an be systematically designed. These range from a fotally manual 

basic vehicl,ewith no feedback to the fully automatic system with complete position 

feedback. 

, The display/control design 'm~thodology was then applied to predict the 

performance of the LaRC CH..:4i hel icopter whieh will be used a; the VALT research 

aircraft. "Two flight conditions were investigated, hover at sea.level and an.approa~~- ' 

ing condition at 60 knots and 1,000 ft/min. descent. Seven levels of control automa-

tion were considered: " 
" 

'. 'Basic system 'without any 'feedback' 

'.' Pitch-rate feedback' . 

• Pitch-attitude feedback' 

• Pitch-attitude and vertical speed feedback 

• Pitch-attitude and vertical position feedback 

• Forward-speed and vertical position feedback 

• Ful,l. position ,feedbqck. , 

Five display system levels were also considered: 

• Information Level 

• Element level with no flight director 

• Eleme'nt I~vel with ~ertical flight direCt'or 
". ~ 

• 'Element level with horizontal flight director 
, ' . 

• Element level with vertical and horizontal fl ight director. 

Cost weighting functions and indifference thresholds for the CH-47 were selected based on 

the desired performance requirements for an advanced VTOL commercial helicopter. 

In general, the numerical results indicated that the flight director does improve 

system performance. Although th is is a fairly obviaus and expected result, the model does 
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provide quantitative indications of the performance improvement with the flight di

rector •. The results also showed that th~ verti cal fl ight director provides ·margi.nal: 

performa,:,!ce. improvement; most of the. performance gain is produced by the forward 

flight direct~r. ,The CH-47 results also showed .that control automation generally 

imp~oves p,erforf'!lan,ce., Again, thi s ,is an;o,bvious and expected ,conclusion, but 'the" 

model provides quantitative measures 'oftheper,formance improvement for various auto-: 

matiQI") ~yste~s. Moreover,. in order toachiev~ the desired system performance, some,' 

leyel.~f..c:'utC?mati~r:'I 'lv'i1I,be.req!)ired for most advanced VTOL missions. The .numerical' 

res\Jlts ~howed that· at hov~r ane;1 <;Ipproach the CH-47hel icopter without ~ontrol; 

automation can!1ot be fl9wn to an acceptable performance level. They also indicated· 

, that tr~ hove~" condit,ioll.is consi;derably more, difficult than .the approach .Howev~r, . 

increasing system automation tends to reduce the difference in difficulty between:the 

two flight conditions. Also, the more automatic systems tend to be less sensitive to 
. . : ~ . :", '. ... . '. . . 

pilot workload variations; as automation increases, t~e slope of the performance curve 
..' . . ,... . . . . 

i' 

versus workload is lower. This means that other temporary demands on the pilotls at-
. ::t. '.' . • 

tent ion will cause less deterioration in system performance as automation increases. . , . - . , ", .. . 

Af~xed-gqin flight director was us~d to examine the effects of changing' 

flight conditions on sy~tem performance. This fHght director used the average of the 

hover and approach gains and was examined at, both flight conditions for two automa

tion levels. At,the lower automation level, the fixed-gain flight director was no better 
"~ .' . . . . 

(perhaps slightly worse) than no flight director at all; whereas in the other case, the 
. '. .' 

fixed-gain flight director performance lay about mid-way between the optimum flight. 

director and no flight director. 'From this limited e~a~ination, it appears that in 

general the flight dir'ector g~i~s'wilr p~~b~bly'have 'to be adiust~ble'to ha~dle a wide 

. range of fl ight conditions. 
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The relative importance 'of the individual display elements was clearly 

demonstrated .for all display sophistication and control ciutomation levels~ The model 

provides a quantitative measure of the relative importance of each display element by 

means of the optimum attention allocation. For example, at a given level of control 

automation and control attention, the information level results show that the pilot is 

far more· interested in forward and vertical velocities and pitch rate than he is in the 

position and attitude elements. As the display sophistication increases -- that isas ver

tical, forward, and full-flight director signals are provided -- he spends less attention 

on the situation displays and more on the fli'ght director signals. Similarly~ as system 

automation increases for a given display configuration, the pilot adjusts his attention 

accordingly. For example, as pitch-rate feedback and pitch-attitude feedback are 

include9, he spends less 'time on the pitch display and more time on the position display. 

'The monitoring model confirms the a priori 'conjecture that more monitoring 

generally imp~ves system performance, since ~ore'monitoring time implies less' control 

workload. However, it is interesting to note that monitoring performance itself does 

not necessarily improve either with increased system automation or·with display 

soph isti cation. Several questi'ons sti II remai n regarding the interpreting of the monitor;.;; 

ing model and merging the monitoring results with the control results •. 

The actual design ~f a display format is still far more of an art than a science. 

However, there are several design principles that should be used to simplify the 

translation of display element analytical results to the instrument format: 

• Operator Centered and Oriented Displays 

• Geometric Real-World Compatibility for Pictorial Displays 

• II Status at a Glance" for Situation Displays 

• Predictive Capacity 
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• Geometric Sensitivity and Scal ing 

• Digital Information Where. Required 

Using these principles, a straw-man display concept was designed in an attempt to 

satisfy the results of the optimal control/monitor model for the CH-47 with two levels 

of control automation. These control systems werE3 pitch-attitude feedback with no 

vertical feedback and velocity command with altitude hold. The three primary instru

ments of interest for both cases are: the altitude director indicator (ADI), the horizontal 
I 

situation indicator (HSI), and the alHmeter. For the pitch-attitude feedback system, 

the ADI proviQes all four fl ight director commands in addition to pitch and roll attitude 

information, while the HSI and the altimeter provide accurate situation informationo 

For the velocity command system, however, the ADI is prim'lrily a monitoring instrument 

and provides no fl ight director commands, while th~ HSI and the altimeter provide the 

principal flight director commands as well as situation information • 
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SECTION 9 

RECOMMENDATIONS 

During the course of the study ,severa I areas have been identified in Whit;:h . 

additional research is needed to define, test and validate the use of the pilot in an 

automated VTOLaircraft. operated as a,short-haul. commercial aircraft. These subject 

areas are outlined below. 

9.1 COMBINED LATERAL AND LONGITUDINAL ANALYSIS 

The pilot/veh~cle/control system mo~els, computer programs and design 

procedures developed in the study should be util ized to conduct a combined lateral . . '. . .. 

and longitudinal analysis of pilot/automatic system task allocation for the VALT Project· 

CH-47 helicopter. Such an analysis viil'1 ""extend the' results obtained in the present 

study and.wi II investigate ,a number of fl ight. conditions including hover, straight-in 

approach,' turning approach and cruise. phases of flight ... Effects of wind gusts and 

wind shears should be included in the.analysis. Different levels of control automation 

ranging from. fully automatic.to fully manual should be investigated. Cons.ideratipn. 

should be.g'iven. to use of an advanced stability augmentation system such as that· 

designed for the VALT Project CH-47 helicopter. The work effort under this task 

would culminqte in a recommended display/control system concept for the C H-47. 

9.2 MONITORING MODEL INVESTIGATION 

The investigation of the mon itoring model developed in the study for 
. ',' .~ '.' 

varyin~ levels: C?f a'utomation should be extended. This effort would utilize the model 

to determine the monitoring attention allocation to each of the primary instruments, 
. .' . . . 

and to the longitudinal and lateral axes. Analysis and interpretation of the monitoring 

model results obtained should then be conducted to determine 1) the effects of different 

monitoring strategies (i .e., current status or future status) On attention allocation and 

2) the extent to which attention used for control (fc) can also be used for monitoring_ 
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·. 
9.3 EFFECTS OF SYSTEM FAILURES ON THE PILOTIN G TASK 

The effects of system failures on the piloting task should be investigated. 

Representative failure modes should be defined (i .e., actuator failure, sensor failure, 

etc.) consistent with the generic augmentation systems. The optimaL control .model 

deveJ9ped in the study should then be utilized to examine the.pilot control workload 

and performance under the assumed failure mode conditions. For example, 'results, 

. could be, obtained that indicate whether a flight director designed for a velocity 

command system can be used when that augmentation system fails. 'Conside~ation should 

be given to investigation of transient conditions to determine the time required by the 

pilot t~ rec~ver fr6m different assumed failures. ' 

9.4 FIXED-BASE SIMULATION EXPERIMENTS 

A series of fixed-base pilot-in-the-Ioop simulation experiments should be 

planned and conducted to 1) validate the extensions in the pilot model <;Iccomplished 

during the initial phase of the study and 2) evaluate and verify the display/control 

system concept for the CH-47. The experiments should be conducted initially on a 

relatively simple and inexpensive interactive display facility such as a PDP-ll/10 

and on the NASA VALT fixed-base display research facility with a good cross section 

of subject pilots. Consideration should be given to experiments for measuring the 

performance differences and subjective differences between integrated displays and 

separate displays. Based on the results of the experiments, methods for representing 

appropriate changes in the analytical model should be made. Experiments to measure 

monitoring strategies in the simulation should be included to determine whether the 

pilot actually uses a normative strategy (i .e., how he should do it) as represented in 

the present model. ' 
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9.5 PILOT INTERACTION WITH AUTOMATIC SYSTEMS 

The pilotls interaction with an automatic system has been only briefly 

addressed by control theory models. Studies of this interaction should be conducted 

to include factors such as pilot acceptance of the system; the "harmony" of the system 

(does it respond the way the pilot thinks he would?); does the pilot interact with the 

system by monitoring a closed-loop system or by "controlling" the open-loop system? 

Actuator movement information can be presented to the pi lot by dedicated displays, 

or by control stick motion. In one case only visual information is presented (actuator 

monitoring is done through the visual channel); and in the other case the monitoring is 

done through the kinesthetic channel (thus allowing more time to visually monitor 

other displays). The model should be examined to see whether differences in failure 

detection times using these two methods can be accurately represented by the model. 
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APPENDIX A 

EQUATIONS FOR THE OPTIMAL CONTROL 
MODEL FOR THE HUMAN OPERATOR 

A. 1 BACKGROUND 

The human operator's basic task is to control, in some prescribed way, a 

dynamical system that is subject to external random disturbances. It is assumed 

that the system dynamics, which may include actuator, sensor, and noise dynamics, 

are described by the' linear, time invariant equations of motion. 

x(t) = Ax(t) + Bu(t) + w(t) 

where the n-vector x(t) represents the vehicle state, u(t) is the human's control 

r.-input to the system, and where w(t) represents random external disturbances, 

w(t) is assumed to be a vector of independent zero-mean, Gaussian white noises 

with autocovariance 

E {w(t)wl(a)J = W () (t - a). 

In controlling the vehicle, the human perceives a delayed, noisy replica of the m 

displayed outputs y = Cx(t) + Du(t). Thus, 

y (t)=Cx(t- T)+Du(t-T)+v (t-T). 
p y 

It is assumed that the control task is adequately reflected in the human's choice of 

a feedback control u(·) which, in the steady-state, minimizes the general quadratic 
. . 

cost functional 

A - 1 

(A-1) 

(A-2) 

(A-3) 
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J(u) = El 'im .!.. JT T-oo T 
.0 

yl(t)Q y(t) + ~(t) Q u(t) dt} y r (A-4) 

It has been shown that the control which minimizes J{u), conditioned on the observations 

yp(')' is generated by the linear feedback law 

(A-S) 

where ~(t) is the best ,estimate of the system state x(t) based on the observed data' 

yp(u),U:5 t. The matrices TN and l are obtained as 

(A-6) 

where 

satisfies the Ricatti equation 

o :; P A + A I P + Q - PB Q -1 B I P 
o 0 0 r 0 (A-7) 

where 

"" and C = [C: D) 

A - 2 
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Note that the Control Equation (A-5) .can also be written as 

where 

The human operator injects noise into the generation of the control input. 

In the model, a Gaussian white noise v (t) is added directly to the Hcommanded . m 

control" u (t) in Equation (A-5) with covariance 
c 

E {v (t) Vi (u)} = V 6(t - u) 
m m m 

Thus the human's control input is assumed to.be generated by. 

TNu(t) + u(t) = u (t) + v (t) 
c m 

with 

u (t) = -l ~(t) 
c 

(A-B) 

(A-9) 

The estimate ~(t) is obtained from the cascade combination of a Kalman 

filter and predictor •. Define the augmented,tate vector x(t) ~ ~\:lJ where the 

new x(t) satisfies 

~(t) = Ax(t) + B u (t) + ~(t) 
c 

(A-l0) 

where 

A-3 
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The Kalman filter generates x(t - r), the least-mean-square estimate of the delayed state 

from 

d A ,.....,,.. A.oI -1 -A ........ 

crrx(t - r) = AX(t - r) + l: CV fy (t) - Cx(t - r)] + Bu (t - r) 
y p. c (A-ll) 

where V is the covariance of the observation,noise v (t), and l: satisfies 
y , y 

with 

o = A~ + l: A' + Vi - l: C' v-1 C 1:; 
y 

(A-12) 

The predictor generates, the best estimate ~(t) from the estimator output ~(t - r) 

according to the equation 

,.... . t ...... 
x{t) = eAT x{t - T) +f eA(t -0") SU

c 
(0") dO" 

t-r 
A differential equation for x(t) can be derived from Equation (A-13), 

+Bu (t - T) c 

A.2 STATISTICAL CHARACTERISTICS 

A closed form expression for the covariance of x{t) may be derived 

(Reference 21) as 

A-4 

(A-13) 

(A-14) 
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.' 

... 

X:::: E {x(t)x'(t) I AT A'T Au'" A 'u ..... 'Y fT"", '" 
=e l:e + e We du 

o 

00_ '" _ 

+ f eAu eA"};C'V- l C"keA'T eA'u du 
o y 

(A-lS) 

where A = A. - BL = Ao - BoLl is the closed-loop system matrix. 

There are three terms in X ; they arise from writing 

X (t) = Ef(t) + Ep (t) + X (t) 

where Ef{t) = filtering error, E (t) = prediction error and X(t) = Itpilotslt state . p 

estimate. The covariance matrices for these terms are all affected by the time delay 

with 

E - A'T' ~ 'i:.T f-e ",e f
T'" ...., 

E = eAcr WeA'u du 
p 0 

(A-l6) 

and X = E{x(t) X'(t)} is given by the last integral term in Equation (A-IS). Note 
,. 

that X satisfies 

(A-l7) 

A-S 
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APPENDIX B 

ATTENTIONAL ALLOCATION USING THE 
OPTIMAL CONTROL MODEL 

The bcisic approach that we follow in applying the optimal control pilot model 

to predict attention allocation among a set of display indicators is to optimize a quadratic 

cost funct,ional wit,h respect to pilot attentional constraints. In order for the entire scheme 

to be computationally attractive, the following must be accomplished: 

• 
• 

• 

• 

Relate attentional model parameters, (fi) to pilot model parameters. , 

Obtain an expression for J* = minimum Jthat shows expl icitly how the 

f. affect the various cost functional terms. 
I , 

Obtain an expression for the gradient terms oJ* that will be needed 'in 

subsequent optimization algorithms. ' ofi , ' 

Develop an algorithm to minimize J* with respect to the fit subject to 

total workload constraints on f •• 
I 

In this appendix we discuss these items. The discussion is pertinent to a pilot control 

task, although the concepts can be applied to apilot monitoring situation as well • 

B.1 INCLUDING ATTENTJONAL CONSTRAINTS 

In the optimal control model t a fractional allocation of attention fj to the 

informational variable Yi modifies the "observation II noise VYj (t) associated with that 

variable (Reference 7). Thus, the noise covariance associated with y. is 
. I 

where cr. = 
I 

a. = 
I 

N(a.) = 
I 

= 

a./N(a.) 
I I 

o 
p. 2 = I A _ a. 
f. I 

I 

RMS value of Yi 

describing function gain of threshold a. 
I 

'erfc ( a i ) 

a • .J2 
I 

B-1 

(B-1) 

(B-2) 

(B-3) 
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The noise/signal ratio p? is the IIfull attention II noise ratio, which typically is O.OlTT or 

-2OdB. Note that Equation (B-1) represents an implicit relationship for the actual noise 

variance Vy since a~ is itself a function of V • For a given p?/f., the requisite V is 
i I Y I I Y 

solved for via an iterative procedure. ' The quantity p?/f. = p. is called the modified 
. I I I 

noise/signal ratio. 

The method that is used to detimnine how a pilot allocates attention among the 

various Yi is to minimize the'optimal control cost with respect to fi subject' t~ constraints. 

This step will require an iterative process to arrive 'at the optimal f., .where successive 
I 

iterates'f~ result in lower values for the cost functional. The cost functional that is used 

to determine the fi is 

J* = min j(u) 
u 

whereJ(u) is the basic cost functional in the optimal control pilot model. 

B.2 EXPRESSION FOR OPTIMUM QUADRATIC COST, J* 
. ". '" 

(B-4) 

In lieu of 9ttempting to minimIze the enti~e expression for J* numerically with 

respect to f., it is more efficient to isolate those terms in J* that are affected by f .• 
I I 

Since changes in f. are reflected 'as changes in observation noise V ; we first' obtain 
I y 

an expression for J* that shows the V y dependence. 

The cost functional J(u), in the steady-state is given by 

J(u) =' E(x'Qx + ulQ u} (B-5) 
r 

where Q is defined in Equation (A-7) and x is the augmented vector x = col [x, ul. 

Equation (8-5) may be rewritten as 

J(u) = tr[QX + Q E(u ~I}] 
r 

(B-6) . 

B-2 
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" 

where X = E[x (t) Xl (t)}. Assuming optimal pilot control, X is given by Equation (A-15). 

The control rate, u, may be approximated by the pilotls own estimate of u (as the actual 

u is modeled to contain a white motor noise). Thus 

.. . . 
u - u = -1.. -1 

-TN Lx-TN u 

-1.. -1 A 

= -TN u - TN Lx (8-7) 

where ue is the error(u - u~ Thus, since x and ue are uncorrelated for optimal linear 

estimation 

+ E ) [-~--] P T'~1 
N 

(8-8) 

where Eft E and X are the filtering error, prediction error and (augmented) state estimate 
p . ... . 

covariance matrices respectively. They are given by Equations (A-16) and (A-1i). 

Substituting Equations (8-8) and (A-16) into Equation (8-6) yields with 

optimal control, 

,....", ,....", T -." -." \ 

{
"" AT. AIr} {'" f A(1 '" A 1(1 } J* = tr Q1e te + tr Q1 e We d(J 

o 

+ tr{ (Q + Ll1 Q r L1)X } (B-9) 

where 

(B-10) 

The observation noise V affects only the error covariance matrix E which appears in the y . 

first and third terms J 1 and J3 in J*. To show this dependence more clearly, we rearrange 

J
3

• Substituting for X and using the cycl ic property of the trace gives 

B-3 
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00 - -

J 3 = trJ eNu (Q + L; Q r L1)eAu du • eATl;C' V;l Cl;eA'T (8-10) 

o 
But the integral term is identified as P, the solution of the Riccati Equation (A-7), thus 

using Equation (A-12), 

(8-11) 

which .may be combined witp J1 and rewritten as , 

J
1 

+ J
3 

= tr [eA''T"PeA'T"W] + tr[eAr'T" (Q1 + PA + A'P)eA'T"~] (B-'12) 

The first term in the above expression is indepentlent of V and may be combined with , ' y 

J2 which is qlso independent of Vy ' Thus, the only te'rm of interest that remains is 

called the "sc;:anning cost": 

Jo = part of J* dependent on V 
, Y 

= tr[eA' "'(Q 1 + PA + A'P)eA'T" ~J (B-13) 

This expression can be simplified by noting that 

Q 1 + PA + A I P =[:~~-~~~!~--L----~----------------~------] 
: -1 (T Q -1 I )-1 o : -P 22Qr P 22 N r TN 

-1 ' -1 = TN Land T N = P 22 Q r so that 

JO = tr (L ~ L r } 
e e 

where L =" Equivalent" gains , e 

B-4 

(B-14) 

(B-15) 
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• 
and L satisfies the variance equation . 

(8-16) 

.1.3 GRADIENT EXPRESSIONS 

Minimizing JO (and he,nce. J*) with respect to fi represents a difficult nonl inear 

optimiza,tion p~oblem. The difficulty is two-fold. First, fj affects Vy .in a.~ implicit 

manner; second, Vy affects JO througl) the Riccati solution};. As it isunli~ely~hat a 

closed-form solution for the optimum f. can be found, the optimization process will be 
. I . 

carried out numerically via some form of gradient 01 gorithm • 

. In order that the numerical process be reasonably efficient, it is. desired to . . " . oj oj . 
obtain d~sed:-form expressions for the gradients 0 f

i

O or 0 V~. . Thus, the :ti!lle-

consuming process of numerically evaluating these derivativescdn be avoid~. 

We wish to obtain the gradient vector 

~-17) 

Where the i
th 

element is : :~ • Consider a smaU change in f i • This will r,esult primarily 

in a change in V (since V = ~o u~) but will al~o cause changes in the other 
Y v. I . 
i ' i I 

noise variances V , j: Ii since (1. will be modified. Thus, 
y. I 

I 

oJO _ 
---
of . 

. I 

and so the gradient vector becomes 

OJ 
= rt--..Q. 

oV y 

8-5 

+ •• 

(8-18) 

(B-19) 
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where dJO is the gradient vector of JO with respect to Vy., i = 1,2, •. m, and r 
~Vy I 

is a "transformation" matrix where 

dVy. 
(r) .. = I (B-20) 

II cH. 
I 

The gradient vector ~JO can be evaluated using a technique of Kleinman 

(Reference 22) for der'ivatives o;Vlace functionals. From Equation (B-16), the 

change i,n 1; due to a change in V y to V y'+ oV is given by 

(B-21) 

where we note (V + 6 V) ~ V I - () V • V + oV· V ) •••. The matrix " -1 -1 [ ; -1, ( -12 ] 
, y y y Y 

A ,....,. ~ -1 """'J . . . 

A == A -1;C V C is the closed-loop system ,matrix for the Kalman filter and has eigenvalues 
y , 

with negative'real'parts. The term'G =1;<:1 V- 1 is the Keilman filter optimal gain matrix. 
y 

The solution to Equation (B-21) is given' by 

co'" '" 

f Acr ' 1 A IU ' 
oE =;: e, GoVG e du 

o 
Substituting into oJO = tr' (L o'l:L I) gives 

e e 

where 

dJO -- = diag (G 1 MG) 
'dV 

co'" '" 

M =feACrL' L eA u du 
e e 

o 
and is easily computed by solv~ng the linear (Lyapunov) equation 

'" 1 '" 

AM+MA +L' L =0 e e 

B-6 

(B-22) 
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• Th I f h . b d. S" 'V P.o,. 2 e e ements 0 t e matrix r must e compute I nee' = -'-- (T. , 
'y. 1:. I - I Tj 

we obtain 

[ 
0-.

2 
] V V 

S I .:. c5 ii = r~. =....n. S Yr' 
f. II f' fj I • ' I " 

where SX is the used sensitivity coefficient, defined as 
Y 

,.2 
U· 

If the terms Sf ~ happen to be <:< 1, then r is approximately a diagonal matrix 
I 

V 
r~r =---1:L=-

ii f., 
I 

,.2 
Pi (Ti 

f. 
I 

(B-27) 

(B-28) 

To determine more precisely th~ 'matrix f, rewrite Equation (B-26) a~ 

V y. ,. 2 
S 1,- S (T • s: 

f '- f I - u·· . . II 
I I 

i,j=l, ..... ,m (B..;29) 

so that if we can obtain siYi , the matrix ris readily obtained. Since a change in f. 
I I 

induces a change i n ~ of the VYi ' we_ can write 

(B-30) 

using the chain rule for sensitivity coefficients. Defining the m x m matrices 

V 
Q 

y. 
= 

Sf. 
I = q •. 

II 
(B-31 ) 

I 

B-7 
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and 

= r .. 

" 
we obtain, substituting Equation (B-30) into Equation (B-29), 

or 

Q = RQ - 1 

-1 Q = -(1 - R) 

(8-32) 

(8-33) 

The matrix R is next obtained since the terms r •• involve changes in the additive observa
. " 

tion noi~es and not in the multiplicative ratios. 

B.4 COMPUTING THE SENSITIVITY MATRIX, 

...2 (J'. 
S I 
V 

Yj 

The main computations required above are in obtaining the matrix R. Below, 

the method used to obtain R is described. We first consider the case of zero observational 

thresholds for simplicity. (This case is pertinent to informational level studies or labora

tory situatiol1s with high resolution displays:~) Modifications for the case when visual 

thresholds a i > 0, e.g., when considering attentionalallocation with realistic displays, 

are then presented. 

The augmented state covariance matrix is given by 

T 

f 
o 

co 

+ f eA(J' eAT (I: AI + AI: + W)eA'T eAI(J' d(J' (8-34) 

o 

B-8 
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• 

" 

and the covariance of the outputs is 

Y ::: E {y(t) yl (t) } 
N .... 

=CXC' 

C tl th . 2.. b onsequen y, e variance u i IS glve~ y 

2 ' 
u. = c~ Xc. = tr { X c. c~ } 

I I I ,I I 

where c! is the i -th row of the C matrix. Substituting Equation (B-34) into Equation 
I 

(B-35) yields, after some manipulation, 

2 { [ -' -] AT' A'T} . u.=tr C.C~+A'Z.+Z.A e 1:e +termsinde-
I I I I I ' 

, , pendent of Yy 

where 
00_ _ 

-f A'u I Au Z. - e c. c. e du 
I I I ' 

o 
and satisfies the I inear equ~tion 

A'Z. + Z.A + c.c! = 0 
I I I I 

Since A = A - Bl, the bracketed term in Equation (B-36) may be rewritten as 

Finally I since 

we obtain 

H. = Z. Bl + L'B'Z. 
I I I 

OOA 

01:= feAu GoY G I eA'CI du 
o 

2 
00'· 

I = 

B-9 

A'T H AT AUd e . e· e CI 
I 

(8-35) 

(8-36) 

(B-3?) 

(B-38) 

(8-39) 

(B-40) 
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, . 

so that 

r •• 
= VYj 

II 2 cr . 
• 

2 ocr • 
• 

The above equations form the basis for the following algorithm to compute R, 

one row at a time. 

i = 1 

t 
Solve 

r - - I 
AI Z. + Z.A + C.c. =:: 0 

'. •• • • • 

~ 
Compute 

'" '" '" NT AT H. = e (Z. BL + LIB IZ.) e 
• J • 

~ 
I Solve 

.. .. '" AIP+PA+H.=O 
J 

t 
Compute. 

Vy• 
j=1,2, .. m r .. = ~ (GIPG} .. ; 

II cr? II 
• 

i = i + 1 No i = m '--
'# ? 

Yes 

IENDI 

Figure B-1. Algorithm for Computing R. 

B - 10 
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To reduce the computational requirements in computing R, the n,x r matrices 

(r = number of control inputs) 

... , 
A TZ . e . B 

I 
i=l, .•• ,m· 

are precomputed and stored. Note that these are dependent only on the optimal feed-

back gains, and not on any noise statistics. Further reductions in computation are 

possible by using the linear equation algorithm of Bartels and Stewart (Reference 23) 

that permits efficient multiple solutions of 

XA + A'X = -Q 

with different right hand sides. However, even without this plgorithrp, the computa

tional requirements for R are less than those needed for one Riccati equation solution, 

and must be termed slight. 

, 

The above developments assumed· a. = 0, i.e., no visual and/or indifferel1c~ 
I 

thresholds, so· that the noise covariance assoc:iated with output y. is 
I 

0 

V = Pi 2 
0. y. f. I 

I 
I 

When a. > 0, the effective noise covariance is determined from 
I 

where 

0 

V = Pi ,,2 
0. 

y. f. I 
I 

I 

~ = a/erfc ( a 
oJ2 

and b = a/o fie 

~ - 11 

(B-41 ) 

(~-42) 
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I n the non-zero threshold case, the matrix R in Equation (B-32) is given by 

,,2 
0 .. 2 cr. 

VYj I cr. 
. (R) •• = Sv = I 

(B-43) 
'I y. ,,2 oV 

( cr. y. 
I ( 

To relate t~is to. the results of Equation (B-40), we write (since;i does not depend on 

cr. ) 
( 

"2 .. 2 2 
ocr . 2 ocr . ocr . ocr. cr. ocr. 

I = I I I I I ...,.--,-- .- = 
oV ocrf 'oV 'Ocr. 00'. oV y. I y. I· I y. 

( ( ( 

or 

'" 2 cr. a' 
(R) .• I I 

= S . Sv (B-44) 
I( cr· I y. 

( 

So that it is only necessary to obtain the m scalarquantities.o;/'Ocri to include the 

thre~hold effects, since the sensitivities 9fcri2 have been determined from th~ zero 

threshold Equation (B-40). From Equation (B-42) 

or 
_b2 

cr. 2 b. e i 
S I =1---'~--

a. 

cr. , .frr erfc (b.) 
I 

where b j = I • Thus, multiplying the i-th row of the zero-threshold R by 
cr. J2 

I 

. Equati~n (B-45) gives the required sensitivity matrix for the situation a i > O. 

B - 12 
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-, 

The above development assumed multiplicative observation noise~. While thi~ 

is true in general for manned vehicle systems,' there are situations in which on~ mi~ht 

consider purely additive noises Vy.( t) with covariances V~., Both additive and multi-
. I I 

plicative cases can fit within the above framework as fo119WS. 

The effective obserovation noise in the pilot model i~ 

0 
p. 2 V. ::: I .. 

cr. I f. I (B-46) 

I 

h 0 • I' I t' 'f' It' I' t' 0 VO dd" . w ere Pi :: nOise signa ra 10 I nOises are mu Ip Ica Ive or Pi:: i a Itlve nOise· 

variance if observation noises are purely additive. In addition, 

a. 
I cr. :: x/erfc(b.) i b. :: I . I I (B-47) 

cr. J2 
I 

where x:: cr. if noises are multiplicative and x:: 1 if th~y are additive. To o&tain the 
I ). . 

gradient of J with respect to f, it was shown necessary to compute the matrix R: 

R .. 
II 

" cr· 
::: S I 

2 cr. 

cr. , 
cr' I 

2 . 

Sv 
y. 
I 

The computation of SVI 
y. 

is identical for either additive or multiplicative noises. ,. 
cr. 

(8-48) 

However, the matrix I S I will be different for these two cases. ~or the multi
cr. 

pi icative case, 

A 

cr. 
S I :: 

crt 

I 

b 2 
2b. e- i 

I 

.fir erfc (b.) 
I 

while for the additive case (x:: 1 in E.quation (B-47» 

,. 
cr. 

S 1=_ 

cr· , I 

-b 2 
2b. e i 

I 

B - 13 
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Thus, it becomes relatively simple to compute oJ/M for either type of noise case by select

ing the proper form of either Equation (B-49) or Equation (B-50). Note that if a. =0, then 
I 

,. 
seJ i -1 0, additive case· 

eJj 1, multiplicative case 

B.5 GRADIENT PROJECTIONS AND OPTIMIZATIO"N 

. oj 
The above algorithm is used to obtain gf =~ which is the unconstrained 

of 
gradient vector. However, the attentional allocations f. are not free but are con

I 

strained by 

m 
~ fi = f* = total attention and 
i=l 

f. ~ 0 
I 

The constraint, Equation (B-51), describes a portion of a hyperplane, 

< c, f> = f* 

(B-51 ) 

(B-52) 

with c = col [1, 1, ••• ,11. Thus, in order to deterlT!ine the feasible direction for 

cost reduction, it is necessary to find the projection of gf on the hyperplane, Equation 

(B;,.52). This is given by 

g~ = 
< gf' c> 

gf - c 
< c, c>-

(B-53) 

or, 

gf = ~f - (! f 9 f) c 
'-1 I 1-

(8-54) 

In other words, gf is obtained by subtracting the average of the gf
i 

from 

each element of the vector. The angle between gf and g~ is 

B - 14 
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• 

, 

p 
< gf' gf> , 

cosO =----
IIgfU ~ IIgfll, 

(8-55) 

The gradient projection, Equation (8-54) is appropriate at t~e informational 

level, i.e., where no distinction is made that two "outputs" come from one display 

indicator. In the display format studies, the fact that a pilot obtains both position and 

velocity observations from a single display indica,tor provides yet another constraint on 

the fi • Assuming outputs are ordered in position"1"ate pairs, . 

(8-56) 

. 
(assuming Y2= Yl' 'etc.). For this case, secondary projectj9n$ofg~ are necessary on 

the planes f1 - f2 = 0, f3 - f4 = 0, etc. 'This is easily done by replaci~ gf1 and gf2 

with (g~ + g~ )/2, etc. Thus, the various constraints imposed by information and/or 
1 2 " 

display level studies are easily treated insofar as gradient projectipns are involved. 

In order to develop a reduced' (projected) gradient optimization scheme, 

assume we are at iteration n, with attention ,vector fn. A small change A f" such that 
, . 

~ + Mn still satisfies the constraints of Equation (8-51) will cause a corresponding smal! 

change in JO. Thus, at iteration n, 

(8-D7) 

If Af" is selected as 

(8-58) 

then, 

(8-59) 

8 - 15 
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Thus, each successive iteration will result in a lower cost (to first order terms only) 

of 100e%. 

Equation (B-59) serves as the basis for a gradient optimization scheme. We 

set 

(B-60) 

'. . "' .. '. ' . .; --.; ,.; '.' +f ',; - - +1 . 
and pick ~ < 1/2 and sufficiently small such that fn = f + Mn satisfies f. > 0 and 

.. , I -
n+ 1 .' . n: ' ", -- " ',: ; I ·r + 1 .., . . + 1 

also JO < JO • Convergence occurs when J~ is arbitrarily dose to J~. If J~ > 

J~, a smaller step is taken by r~ducing P. N'ote that since Mn is i~ the direction of 

g~ ,:'theresulting f+ 1 must necessarily continue to satisfy the constraints imposed on fn. 

r Wh~n using ~he abovegrac:fi.ent. projection algorithm to optimize attentional 

allocati~n, it is necessc;JI::y,to modify.the scheme whenever 

gP > 0 and € > f. > 0 f. I 
(8-61) 

.:. I 

In such a situation the mathematics do not want to'.pl~ce any attention on instrument i. 

Thus, one cannot move in the direction of the gradi~nt since fi would go negative. The 

modification. that is obviously called' for is ,"0 set 

gP = 0 f. 
I 

whenever the above condition, Equation (8-61),' is encountered. Thus, f. remains 
I 

fixed for the iteration and the re-projected gradient is modified to guarantee that 

as required. 

~gP = 0 
LJ f. 

I 
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APPENDIX C 

LINEARIZED ROTORCRAFT EQUA TlON~ OF MOTION 

In developing a mathematical model for use in the analysis of an'automatic 

approach and landing system for a tandem rotor helicopter, linearized equ~tions not 

normally used in aircraft stabi lity analysis are required. 
, . 

C.1 DERIVATION OF THE NONLINEAR EQUATIONS OF MOTION· 

Before developing the linearized equations of motion for analysis purp'os~s, 

the non I inear equations are developed. 

C. 1. 1 - ROTARY MOTION . 

,The equations ~re written in the c~nventional'body 'axis syVem, with t~e .. 

origin at the helicopterls'center of mass. The x-axis (roll) is directed 'forward, the 

y-axis (pitch) is directed out the starboard side, and the z-axis (yaw) i~ directed 

"downward" to complete the orthogonal set. Assume that the x-z plane is one of 

symmetry and define the inertia matrix as 

I 0 J 
xx xz 

/). 

= 0 I 0 
yy 

J b I xz zz 

where 

J ~ - fxy dm = 0 xy -
due to x-z symmetry 

J /). fzy dm = 0 
zy 

/). 

J = - Jxz dm xz 

C - 1 
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The components of the angular velocity vector in the body axis system are given by 

[
PO] , 

w ~ .•. ~. 

where P, Q, R are the components of the angular velocity resolved along the body axes 

x, y, and z, respectively. Similarly, let the applied torque be denoted as 

.. ; 

With the assumption that the angular momentum of any rotating machinery onboard, , 

such as engines and, in hel icopters, the rotor, is negl igible, the equations in inertial '. . : 

space are,_written simply 

T= d '(IUl). 
dt 

(C-l) 

On the assumption that the Earth is inertial, then Equation (C-l) is written in the 

. body axis system as 

T = I dlUl +wxlw 
dt 

(C-2) 

where the prime denotes lias seen by an observer fixed in the body axes, II and therefore 

dlw ~ 

dt [~] 

C - 2 
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.' 

, , 

where the dot denotes total time derivative. Substituting the appropriat~ definitions 

into Equation (C-2) r~sults in the equation set 

. . 
L \ P+J R J PQ + I QR -I QR 

xx xz xz zz yy . 
f' RP + J _ (R2 - p2) - I RP M = lyyQ + 
xx xz zz 

(C-3) 

N Jxz P+\ R I PQ - \ PQ - J RQ 
zz yy xx xz 

These equations define the rotary motion of the hel icopter. 

C.1.2 TRANSLATORY MOTION 

Assume that the mass of the hel icop~er is constant and denoted m. Let the 

force vector be denoted, 

F~ [~] 
where X, Y , and Z lie along the body axes. Note that in the-conventional body axis 

system the total velocity 

is resolved along the body axes. The equation in inertial space may then be written 

d F = - (mVT). 
dt 

(C-4) 

On the assumption that the Earth is inertial, then Equation (C-4) is written in the body 

axis system as 

C-3 
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dly 
F = m __ T +wxmY

T dt 
(C-5) 

Making appropriate substitutions int~ Equation (<::-5) gives the equation set 

. 

[
:] = [:~] + [:w : :::] 
Z mW mPV '- mQU 

(C-6) 

These equations define the translatory motion of the aircraft. 

For an aircraft in the conventional body axis system, the attitude can be 

described with respect to a set of axes fixed in the Earth. To do this we define an Euler 

angle se,t denoted 'i', 9, t. These three angl es are the azimuth change, elevation 

change, and roll required to arrive at the aircraft attitude from the inertial axes. 

They must be'taken in the'given order. If a vector is denoted in the inertial coor-

dinates as C. and viewed from a coordinate system which has been slewed through 'i', 
I 

weget 

C
1 

= T ('i')C. 
Z I 

where 

[

COS'i' 

-Si~ 'i' 

sin 'i' 

cos'i' 

o 

(C-7) 
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If the observer is then el eva ted through e I he sees 

C
2 

= T (e)C 1 = T (e)T ('¥)C. 
y ¥ z· ,I 

where 

o -sin e] 
1 0 

o cos e 

Finally I if the observer is rolled through ~ I he sees from aircraft body axes 

where 

C b = T (~)C2 = T (~)T (9)T ('¥)C. x x y Z 1 

T (~) 
x 

t. [~1 o 
cos t 

-sin t 

C .1 .4 GRAVITY FORCES 

With Equation (C-9) the gravity force may be written in body axes as 

[

-sin e ] 
mg sin ~ cos e 

cos t cos e 

C.l.5 EULER ANGLE RATE EQUATIONS 

The body' axis rates may be. written as functions of the ·Euler angle rates: 

C-5 

(C-8) 

(C-9) 

(C-10) 
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o 
cos e 
-sin e 

-sin 9 ] [f] 
sin t cos e ~ 

cos f cos e '¥ 

C.1.6 INERTIAL VELOCITY EQUATIONS 

If the velocity in inertial coordinates is denoted 

then we may write the body axis velocities as functions of the inertial velocities 

V cos e cos '¥ + V cos e sin 'Y - V sin 9 x y z 

== V (sin ~ sin e cos 'Y - cos~ 'sin 'Y) x , 

V (cos t sin e cos '¥ + sin ~ sin 'Y) x 

o 
+ V (sin t sin e sin '¥ + cos~ cos 'Y) + V sin t cos e 

y . z 

V (cos t sin e sin'¥ - sin~ cos '4') + V cos e cos ~ y z 

(C-ll ) 

(C-12) 
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C.2 LINEARIZING OF EQUATIONS USING DELTA PERTURBATIONS 

The. purpose o~this linear model is~o analyze.an automatic appr9ach and 

landing system. As such, the system is tied to the Approach Navigation Frame (ANF). 

This is an Earth-fixed coordinate system with the origin at the desired touchdown point, 

the X axis along the runway, and the Z axis down along the local vertical. The syst,m 

is considered inertial. The variables to be commanded will be in the ANF such as Vx; 

Vy ,arid Vz and 'i', e, ,. The control system wi II therefore be feeding back th~se 

quantities from an inertial platform. The linearized equations are then desired in terms 

of these variables. The derivation of these equations fo"ows~ 

C.2.1 BODY TRANSLATORY E9UATIONS 

Rewrite Equation (C-6) with the forces being divided intQ atlrodynamic forces 

and the gravity forces of Equation (C-10) 

XA U = RV - QW + - - g sin e 
m 

• Y A '. '., 
V = PW - RU + - + g sin t cos 9 

m 

ZA 
W = Q U - PV + - + g cos ~ cos 9 

m 

Assume the following perturbations 

U = Uo + u P = p 9 = 90 + e 

V = v Q = q 

R = r 'i' = 'i' 

C-7 
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Note that the perturbations are simply added to the Euler angles. If steady 

fl ight is assumed, the steady fli ght equations are obta ined from Equati 6n (C-13) 

x 
0= AO ... gsin90" 

m 

(C-1S) 
m 

ZAO 
o = -- + g cos eO 

m 

N ext note tha t for sma" e 

sin(eO + e) = sin 90 + (cos 90) 9 

(C-16) 

cos(eO + e) = cos 90 - (sin 90) 9 

Substituting the definitions of Equation (C-14) into Equation (C-13), using Equation 

(C-16) and subtracting off steady flight, Equation (C-1S), yields the following perturba-

tion equations 

. ~XA 
u = -Woq - (g cos 90)e+--

. m 

C-8 
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C.2.2 BODY RATE EQUATIONS 

Substituting the perturbation defini.tions of E~uation (C-14) into Equation (C-3) 

and dropping second-order terms gives 

_ 6M 
q 

I 
yy 

r = _ J xz p + 6N 

I I zz zz 

C.2.3 EULER ANGLE EQUATIONS 

(C ... 18) 

The relation between Euler angle perturbec;i rates and body perturbed rates is 

desired. This is obtained by inv~rting Equation (C-:11) and appl)Clng the 'per:turbotion- - -

definitions to give 

. 
e = q 

(C-19) 

r 
'¥ = ---

cos 90 

C.2.4 EQUATION SET WITH AERODYNAMIC PARTIAL DERIVATIVES 

The motion of the aircraft is described by Equations ((-17),'((:-18), and (C-19). 

The force and moment perturbations are, in general, functions of the motion and can 

be written to first order as a linear function of the motion variables. Motions in the 

longitudinal plane are assumed to separate from the lateral-directional to give t~e 

total equation set which follows. 

C-9 
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Xu Xw X Xo X 
u = -Woq - (g cos 90)9 +-u +-w +-..9.q +-eMe +~c 6.0

c m m m m m 

Y Y Y Y Y a 
v = Wcj' - UOr + (g cos 90)~ +....::!..v + -fp + ~r + ~ 6.00 + -=.r 6.6" 

m m m m m 

Z Z Z Zo Zo 
w = Ubq - (g sin 90)9 + ~u +...:!!..w + --.9. q + ~t.oe +_c 6. 0c 

m m m m m 

p = 
J xz· 
--r 
I xx 

L L L L6 La 
v pro r 

+--v+--p+-r+--6.6a +- 6.0 
I I I I I r 
xx xx xx xx· xx 

• M M M Mo Ma 
q = ~u + --!!.. w + --.9. q + __ e 6.6+ __ c 

r = 

. 
e = 

~ = 

'i' = 

I I I I e I 
66 

c 
yy yy yy yy . yy 

" . 'N' 
J N N N N 6 
~ P +~v +.....f.p + __ r r +_°0600+ __ r 6.0' 
I I I I I I r 
zz zz zz zz zz zz 

q 

p + (tan 90)r 

r 

cos 90 

(C-20) 

In the above e.xpressions () , 0 , 0 , 0 are the four control displacements e car . ' 

corresponding to differential collective, gang collective, roll cyclic and yaw cyclict 

respectively. 

C - 10 
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C.2.5 EQUATION SET WITH BODY RATES ELIMINATED 

Equation (C-20) mCiybe reduced in variables by eliminating the body rates 

wi,th the last three equa,tions. The 'result is 

Y 
+~65 

m 

.. Lv v + Lp (J xz ' . ) 
~ == - - ~ - -cos 90 - Sin 90 I ' I I 

xx xx xx 

MM' M. M 
9 == ~ u + --Y!..6W + --.9.69 + _6 a6' 

I I I I 
yy yy yy yy 

(

L ' L ~. L6 if - Lsin 9
0 

- _r_cos 9
0 

'f + - 6'0 
I I I xx xx xx ' 

'f == (Nvv + Jxzl!j + Np' ~ - (Npsin 9 0 -: Nrcos eO)~ + N 6 A6) 
I cos 9 0 + Jsin 90 zz xz 

where ( ) 6 66 indicates the summation of partial derivatives and actuator deflections. 

C.2.6 REDUCED EQUATION SET IN VECTOR-MA TRIX NOTA nON 

Putti'ng Equation (C-21) 'in vector-matrix notQtion results in the following 

longitudinal equations: 

C-11 

(C-21) 
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x x (wo -x:) S +9 cos 90 
Xo u w 

S-- -- u 
m m m 

, 

Z Z - (Uo + Z:) S + 9 sin eO Zo u w 0 (C-22) -- S-- w = 
m m m 

M M 
~ -~q)s M6 u w 9 -- -- --

I Iyy Iyy yy yy 

The lateral-directional equations are: 

(s _ :v) -(wo+ :)S-9COS80 ((WO' :)""0' (uo-:),~+ Vb 

v m 

(- ~:J (s -I~) S - ((:"' 'M '0 ,,', '0) S -{," '0' f-,m + lb 
6 cp I 

xx _ xx xx xx 

(_ :v) ,- C:z 
. s + :p)s Ht ""0- ~~ ='0)) S • N6 

B 

(C-23) 

where B A I cos 9
0 
~ J sin 9

0 
and S ~ ~ the Laplace differential operator. 

zz xz dt' 

C.2.7 INERTIAL VELOCITY EQUATIONS 

If Equation (C-12)' is Hh~rized, the result is given 

(C-24) 

With these equations, the body axis velocit}es can be eliminated from Equation (C-21) 

cmd the resu It is given 

C -l2 
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+ _1_. _(_Xq e _ (._XU Wo --~W-'Uo +g cos (
0
)9 + _Xe 0) 

cos 90 m m. m m 
, I . 

. y y. ( y ) (Y ' .. 
I:l V =....::!.. t.v + -E. 6¢ + ....:!.. Wo + 9 cos 90 ¢ - ...E sin 90 ' 

Y m Y m m m 

+ 1 (Zqe_'(Zu wo _ ZWUO+gSin90'9+ Ze e) 
cos 90 m m m ~ m 

.. (M M ) (M M ) 9 = ~ cos 9
0 

+ --...:!!. sin 9
0 

I:l V - ~ sin 90 -....::!:!. cos'9
0 

b. V 
I I x I . I '. .' z . 
YY YY yy YY 

M . (M M ~ Mo + ~ 9 - ~ Wo - ~ Uo 9 + -. 0 
I I I I 
YY yy YY YY 

L L. L (J ) .. (L . L ). ~ = ~ b. V + -.e... ¢ + ~ Wo ¢ + ~ cos 90 + sin 90 ~ - L sin 90 - _r_ cos 90 ~ 
I Y I I I I I 
xx xx xx xx xx xx. 

•• 1 ••• • 
'It = - [N AV + J .¢ + N ¢ + N W

O
¢ - (N sin A... - N cos 90)'It 

B v Y xz P v P. \J r 
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6. .. 
where again B == I cos 80 + J sin 90 , zz xz 

C.2.8 INERTIAL VELOCITY EQUATIONS IN VECTOR-MATRIX NOTATION 

Equation (C-25) may be put into vectpr-matrix notation giving the 

following longitudinal eq~ation,s: 

(cos AO)S - (:u cos 90 + x: sin 90) 

(sin solS - tZ: cos eO + Z: sin 9~ 

(-sin 90)5 + {Xu sin 9
0 

_ Xw cos %\ 
~-m . m I 

(cos 90)5 + t: sin 90 - Z: cos %) 

M M M' .' M 
- ~ cos 90 - -..:!!. sin % 

Iyy Iyy 
~ sin-sO - ~ cos .AO 
I I yy yy 

and the following. lateral ~quations: 

(5 -~) 

(- ~J 
(_ :v) -~ 52 -'--f. 5 - --.!. w· 

(
J N' N ) 
B B B 0 

....f sin 90 - ~ cos 90 S + ~ V)( 
(

y y ) y. 

m m m 0 

-(Jxz 
cos "0 + sin go) 52 + (2Sin 90 -2.. tos 90~S + ~ V 

I I I I "0 xx xx xx xx 

'w z 

ov 
y 

m 

m 

(C-26) 

6 . 

(C-27) 

6 . 6 6 d 
where V xO == Uo cos 80 + Wo sin 80 , B = Izz cos 90 + Jx~ sin 90 andS =dt the Laplace 

differential operator. 
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.. 

C.2.9 - STATE-VECTOR EQUATIONS 

The equations-above are not in' a form suitable for the state-vector formulation 

because the equations containing flV x' flV z and .~ I ¢ are each simultan~ous sets of 

equations. To solve for 6V x a~d flV ~I we :note ti1at th~se two equations in Equation"_ 

(C-27) can be written 

where 66 are the actuator deviations from trim settings. 

Inverting these equations leads to 

. 
e 
11.& 

where the matrix D is given by 

= (COS 90 

- sin 90 

+sin eo) D 

cos 90 

c - 15 
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u w . (x x ~ -;;;- cos 90 T -;;;- Sin 90 
u • VI (x x ~ - -;;;- SIn FlO - -;;;- cos 90 _(:u Wo" xmw • Vo T 9 cos 9 0) 

o = 
u w • (z z ~ -;; cos 9 0 T -;;;- Sin 90 

.. u· VI· ~ z ~ - --; sin 90 - -;;;- cos 90 l' z ~ - --; . \Ato - . mW Vo T 9 sin 9 0 

Similarly, th~ equations containing °t and ¢ can be written . .' . 

1 

-J xz 

I zz 

-J xz 0 

-- cos 90 - Sin 90 

'xx 

J 
+ xz 0 • 

cos 90 -- Sin 90 
'zz 

Inverting these equations to solve for q; and ~o yields 

Jxz J xz 

(~) 
1 

1 +- tan 90 - + tan 90 
Izz 

, 
xx = 

J2 J 
1 - xz xz 1 1 , , , cos 90 cos 90 xx zz zz 

or 

t.Vy 

(~) 
cp 

0 

= E cp 

• 0 • 
66 

where the matrix E is given by 

C ... 16 

(::) 

X X6 -9.. 
m m 

Z Z6 -9.. 
m m 

(C-31 ) 

(C-32) 

(C-33) 

(C-34) 
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.. 
J 'j 

1 xz xz +- tan 90 ., - + tan 90 , 
'xx -E = zz E (C-3S) 

J2 J xz 
1 -

xz - . , , Izz cos 90 cos 90 
xx zz 

l l l l l l l6 v v L. -(uO cos 90 + Wo sin 90) ~ v P . 
-wO -, cos 90-,- Sin AO -

'xx 
, , . , I I I xx xx xx xx xx xx ... 

E = 
N N N N N N N8 v v --.f -(uO cos 90 + Wo sin 90) ~ v 9 p. -wO - cos 0 - -, Sin 90 -
I I I I I I I zz zz zz zz zz z~ zz 

C.3 WIND GUST DISTURBANCES 

C.3.1 GUST MODEL. 

The wind gust model is derived from the Press-Meadows analytical representa-
, 

tion for the power spectral density (PSD) of random turbulence (Reference 24): 

where ~(w) 

2 
O'g 

l 

Vo 

(1) 

2 L [1 + 3(l/V/ .. 2] 
(C..,37) ~ (ill ) = (] -' ' , 9 .. 

Vo 1 +(l/v )2 (1)2 
, , 0 

= power spectral density, ft2/rad/sec 

mean-square gust velocity, ft2/sec 
2 = 

= scale of turbulence, ft 

= equivalent airspeed, ft/sec 

= frequency, rad/sec 

To obtain a random wind model, W , which satisfies the Press-Meadows pOWS' 
9 

spectral density, a wind filter 'can be used to shape a unity rms white Iloise input. Since 

the PSD is 

~«(1) = Iwg(iw)12 = w (jw)w* (jw) 
9 9 . 

(C-38) 

C - 17' 

(C-36) 
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* where w is the complex conjugate of w , spectral factorization can be used to 
9 . 9 

obtain w (w). Replacing jw by the laplace transfer function equivalent for the wind 
9 

fi Iter: 

w (s) (s +0') 
-g-=a y--~ 

n 9 (s + ~)2 
(C-39) 

where 

y= ~3YjL 

O'=Yj~L 

~ =VjL 

and n is the driving white noise. 

Using partial fraction expansions, Equation (C-39) can be written as 

(C-40) 

A block diogram of the wind gust model resulting from Equation (C-40) is shown in 

Figure C-1. The corresponding model in the time domain is obtained by defining 

the two wind gust variables 

. . 
w gl w 

9 1J Wg2 Wg2+ c +.0- 1 + 1 + 
_'<. 

_. I a-S ~ 

~ - 'Ol 
S -. s 

. , 

~ ~ ~ 

Figure C-1. Block Diagram of Press-Meadows Wind Gust Model. 
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(C-41) 

The I inear equations describing the wind gust model become: 

x=A x+Bu+En 
w w w w w 

(C-42) 

where, 

(C-43) 

The total gust velocity is 

w=w 1 +w 2 9 9 9 
(C-44) 

and the wind gust rate is' 

~ = ~ 1 + ~ 2 = (0' - 2~) w - ~ w 2 + a y n 
9 9 g. 91 9 9 

(C-45) 

The previous development is appl icable to gusts along a~y of the three aircraft 

axest • However the appropriate values must be selected for the model parameters a' , 
9 

L'c:irid V • The magnitudes of the turbulent·velocities are represented by their rms values 
o 

a . ,0' " and 0' . (downwind, crosswind, and vertical, respectively). The rms com-
gu gv gw 

ponent of a is approximately gu 

0' ,; O.'ZW (C-46) 
gu 

. tThe Dryden model of atmospheric turbulence PSD is equivalent to Press-Meadows 
for turbulence nor~al to the airspeed; f~r turbulence parallel to the airspeed, the 
Dryden PSD is 2a 9 (VVo)/[ 1 + (VVo) U) 

2 J • 

C - 19' 
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where W is the mean wind speed (Reference 25). The ratios of the rms speeds near 

the surface are about 

C! : (J : (J ~ 1.0: 0.7: 0.5 
gu gv gw (C-47) 

These increase with altitude so that all components are nearly equal at 500 ft {Reference 25). 

The turbulence scale L is approximately equal to 1,000 ft for altitudes above 1 ~OOO fti 

below 1,000 ft, the scale for vertical turbulence is approximately equal to the altitude, 

while the scales for the horizontal components decre<;lse to about 500 ft at the surface. 

3.2 AERODYNAMIC FORCES DUE TO WIND GUSTS 

The atmospheric turbulence provides disturbance inputs to the aircraft through 

the aerodynamic forces. Each of the wind gust components may induce important air

craft responses, but the vertical component w g is primarily responsible for normal 

accelerations. This component is generally considered the most important disturbance, 

and is the only one treated explicitly in the following discussion. Howev~r ,:the analysis 

of u and v follows the same general pattern • 
. g. g . 

For most rigid-body analyses, it is sufficient to omit the small portion of the 

turbulence spectrum for which the gust velocity gradients are not adequately represented 

by equivalent rates of aircraft pitch and roll (Reference 24). The aerodynamic effect 

of the vertical gust is to modify the angle-of-attack and the pitch and roll-rates. 

Effective angle of attack = ex + ex g = {w :- w g)/V 0 

Effective pitch rate = q + q = q + w IV g. g 0 

Effective roll rate = p + Pg = P - wlVo 

C - 20 
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These modified values are used in caICula'ting the aerodynamic forces and moments, 

e.g., instead of (Xz./m)w in the equations of motion, there will appear the term 

(X Im)(w-w). Of course, none of the inertia terms in the equations of motion 
zvl 9 

are affected. 

The result of the wind input appears as additional terms on the right hand 

side of Equation (C-20). 

x x .= _ w 
u ••• -- w .+~ -.-w 

m 9 m V 9 
o 

y 
v= ... -2- --w 

·m· V g. 
o 

w= 
z z 

••• -~ W + __ g _ __ 1_ w 
mg. m V 9 

L 
P = ... - --L _ w 

m V 9 
o 

M M 
q = ... - --Y!- w + -.-q-

9 m m 

N 
r - ... -_-L..P_ 

m 
--w 
V 9 

o 

o 

·1 
--w 

V 9 
o 

(C-48) 

When these terms have been carried through the derivation, the end result is the addition 

of the following terms to the inertial frame equations: 
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AV = .... + wg cose + ~sine w + ~ cose . [X Z J [XO 
x 0' 0 9 m 0 m m 

+Z~g sine J ~ 
o 9 m 

o [Yo j _ wg· AV- ... + -- w 
y m 9 

A V = ... + 
z [

_ Xwg sin9
0 

+ Zwg COS9
0
] w 

m ,m 9 

[ 
Xo z· J 

+ - mWgsin90+ :g,cos90 

o [L o. J N· J' P = + J wg _xz wg" ... ------w 
I I I 9 
xx xx zz 

[M] [Mo ] • _ wg wg . 
q - ••• + -1- w 9 + -1- w 9 

yy, , yy .. 

o J [_ Jxz 
r = ... + I 

zz 

w 
9 (C-49) 

2 -1 
where J = (1 - J /1 I ) • The gust stability derivatives have been defined as' 

xz xx zz 
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x = - x wg w 

XWg = X/Vo 

V. =-y IV 
wg p' 0 

z = -z, 
wg w 

z· = Z IV wg q' 0 

l· =-l/V wg . p' 0 

M =-M wg w 

N· = -M IV. 
wg p' 0' 

(C-50) 

The gust rate coefficients in Equation (C-50) are inversely proportional to the 

airspeed V , and become infinite as V approaches zero. To avoid this difficulty in 
o 0 

hovering conditions, an equivalent airspeed can be used in the wind calculations. From 

Equations (C-46) and (C-47), the rms vertical turbulence velocity is approximately 0.1 of the 

mean wind; therefore, for a specified turbulence level, the equivalent airspeed can be 

defined as 

V = lOa 
o gw 

(C-51) 

C.3.3 LONGITUDINAL EQUATIONS WITH GUST INPUTS 

The state variables for the longitudinal equations must be augmented by the wind 

states in Equation (C-41): 

T x = [W
g1

, w ,6x, t.z, /::,9, t.V , t.V ,q] 
g2 x z 

C - 23 
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Using Equations (C-44), (C-45), (C-49), the wind inputs alter the vehicle equations 

as follows: 

b.V = •.• +[XWg + Xwg (a-2/3)]W + [XWg _ X;g /31.w 
x m m g1 m m J g2 

(C-53) 

; [Zw Zw ~ tZ z.] b. V z = •.. + --1L + --g (0'-213) w. +. wg - wg 13 w 
m m gl m m Q2 

+[ZWg (J yJ n 
m· 9 . 

(C-54) 

[M M· J [M M· . ] . q = ..• + ~ + ~ (0'-2\3) w 1 + wg - ~ \3 w 2 
m m 9 m m 9 

(C-55) 
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APPENDIX'D " 

CH-46 DYNAMICS WITH MODEL-FOLLOWING AUGMENTATION 

This appendix presents the derivation of the eqvations of motion for the 

CH-46 to be used with the optimal cont"rol model of the pilot. The basic equations of 

motion of the aircraft with the f,our actuator inputs are contained in AppendiK C. 

The first task is to derive the equations of motion for the control strck inputs taking 

into account the attitude command system used on the CH-46C whose flight test data 

will be used to confirm the pilot model. The second task is to specify that the output 

equations of the controlled element are corisisten~ with the displays implemented in 

the CH-46C. " 

0.1 ROTORCRAFT DYNAMICS WITH MODEL-FOLLOWING AUGMENTATION 

A block diagram of the LaRC Model-Following Control augmentation system 

for the CH-46 is shown in Figure 0-1 ~ In this section we derive the effects of this 

type of augmentation system on the dynamfcscontrolled by the pilot. The difficulty 

arises because of cross-coup I ing between the contr~1 actuator dedicated to provide the 

model response and the effect of that actuator o~ other state variables. For "example, the 

differential collective may be used to satisfy the pitch response of the hel icopter, 

but by so doing, it will have an influence in the translational equations. 

The basic unaugmented vehicle equations are "written in the form 

x = Ax + B6 + Fw (0-1) 

or 
(0-2) 

o - 1 
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In Equation (0-2) the state vector has been partitioned such that x2 represents that 

portion of the state to be controlled accorqing to some desired model response. The 

inputs to this system are the actuator inputs &which are dedicated to satisfying the model 

response. Oisturbance inputs and other actuators affect; ng the equations of motion, but 

not being used to satisfy the model response, are included in the vector w. 

Assume that it is desired to have the partition of the state vector x
2 

follow a 

model equation given by 

(Q-3) 

Note that the derivative of the model response is given by linear com\>inations of the 

model state itself x~ , feedback of the other partition of.the state vector xl (e.g,. position), 

and the control stick inputs u. 

If the control augmentation system is well designed, then it will forc~ x2~x~ 

and ~2 ~ x~ ~ I'n this case, we' may subtract the second part of the state Equation (0-2) 

from th~ model Equation (0-3) and solve for the actuator activity which i~ dedic<;Jted to 

sati sfy th is response: 

(0-4) 

Substituting this value of the actuator activity into Equation (0-1) provides the follow-

i ng form for the state equations when the system follows the model: 

(0 .. 5) 

0-3 
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where 

(D-6) 

Note that the partition of the state vector x2 has the desired response of the model, but 

also that the dynamics of the other partition of the state vector =1<1 have been altered 

because of the effect of the dedi cated actuator ~ on these equations. 

D.2 LONGITUDINAL EQUATIONS OF MOTION 

The equations of motion for the longitudinal axes are derived in Appendix C . 

. We use'as state variables in~ these equations, the Euler angles and body rates to be 

consistent with control augmentation schemes and guidance schemes employed ~ When 

we partition the longitudinal equations to account for the attitude command system in 

pitch, we have 

~ 6.x 0 

,.,i 6.z 0 

· All A12 
0 e e I 

· + 
b11 

~e (D-7) 
,.,Vx = 6.Vx 

· 6.Vz 6.Vz b12 
------r------

q A21 I ~2 
b

2 
q 

D-4 
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where 

r: 0 0 1 0 

0 0 0 
All = (D-8) 

(5 x 5) 
0 0 0 0 0 

0 0 °11 °12 °13 
0 0 °21 °22 °23 

I 

A12 = (0 o °14 (0-9) 
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The coefficients D·" are given in Appendix C. " . 

The desired pitch response system may be writtan, in terms of the present 

notation, as 

= (0, 0, _w2,· 0, 0) 
n 

S* = K w2 
2 9 n 

w = 2.0, 1.43 
n 

, = .75 

K e = . 1 5, • 1 0 radii n 

(D-12) 

Substituting these resulh into Equations (0-5) and (D-6) will provide the equations of 

motion in the longitudinal axes under the attitude command system. 

D.3 LATERAL DIRECTIONAL EQUATIONS OF MOTION 

In a manner similar to that for the longitudinal case, the lateral directional 

equations of motion can be written to account for the attitude command systems in 

roll and yaw. Using the formulation above, these equations become 

. 
6y o 0 6y 

¢ ¢ o 0 
All 

I 
A12 I 

'Y I 'Y o 0 I 
I o 0 COo) . I 

6Vy I 6Vy b
1 

b2 = I + (D-13) I 60r I 

----+----
A21 ! A22 S· 

p p 2 

. 
r r 

D-6 
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0 0 0 • 
All = 0 0 0 0 (D-14) 

(4 x 4) 0 0 0 0 

0 a
42 

'0 43 
Yv o_ 

m 

-0 

Yv 
where a 42 = - W + 9 cos e , , - - - _ _ m -0 _ 0 

Yv 
°43 = -(U cos 9 + W sin 9 ) 

o 0 0 0 m 

0 0 

tan 9 
0 

A12 0 1 = (D-15) cos 9
0 

Y :y 
-1? r 
m m 

C Ell E12 
E 13 ) 

A21 = 
E21 E22 E

23 

(15 f16 ) 

(D-16) 

A22 = 
E25 E

26 

b1 = Y p, (D'-17) a 

b2 = Yo 
r 

J 

D-7 
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(D.-1S) 

See Appendix C for the coefficients E ..• 
. . II 

For simpl icity, we show the model response equations in yaw assuming that 

the heading hold mode is employed. In this case the model response equations become 

where 

where 

B * ~ ::: 2 

-w n 

o 

2 

W n ::: 2, 1.43 

C ::: .75 

w ::: 2.0 
o 

Co ::: .70 

(

w 2K 
n ¢ 

o 

K¢::: .15, .10 rod/in 

K'1' ::: .35 rod/sec/in 

o 

-w 
o 

o-s 

2 
(0-19) 

(0-20) 

(D-21 ) 
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, 

, 

0.4 PHYSICAL AND AERODYNAMIC CHARACTERISTICS OF NASA/LaRC 
CH-46C HELICOPTER 

Table 0-1 summarizes the pertinent physical characteristics of the vehiCle, 

including control displacement lir~its •. Tables 0-2 through 0-7 give the t~ifTl ~onditions, 

fuel flow and stabil ity derivatives as functions of forward speed for three rates of 

descent. The data :.in Tables 0-2 t~rough l?-7 were calculated for a gross weight of 
. .'. ,. 

13,400 Ibs~ normal c.m. position and ~ea level flight. In Tables 0-4 tnrough 0-7 

(non-zero rate of descent), the data for forward speeds greater than 80 knots were 

extrapolated from 80 knot values by assuming constant offset from the corresponding 

zero ~ate of descent (T abl ~s 0:"2 an~d 0~3) data ~ 

Table 0-1. Physical Characteristics of 
. LaRC YHC-1A Helicopter. 

Parameter - Value Units 

Operati ng mass, m 
; 

6078 kg 

Rolling moment of inertia,' I 12,474, kg-m 2 
xx 

Pitching moment 'of inertia, I 102,898 kg-m 2 
yy 

Yawing !1loment of inertia, I 
, 
97,238 

. 2 
kg-m 

zz 

Cross-product of inertia, J -9638 kg-m 2 
xz 

Reference area, S 341 2 m 
. . r .. 

Reference chord, c 0.4572 . m 

Rotor radius, R 7.367 m 
r 

Control travel limits 

Collective stick, ti~ 0-32.512 cm 

Longitudinal stick, ti +13.97 cm . e -
Lateral stick, ti +9.14 cm . a -
Pedal, tir +5~85 cm -

0-9 

Engl ish Units 

(13,400 Ibs) 

2 (9203 slug-ft ) 
. 2 

(75,914slug-ft ) 

(71 ,738 slug~ft2) 

(7144 slug-ft2) 

(3670 ft2) 

(1.5 ft) 

(24.17 ft) 

(0 - 12 • 8 in.) 

<!5.5 in.) 

(~3.6 in.) 

(~2.3 in.) 

AEROSPACE SYSTEMS. INC •.• ONE VINE BROOK PARK • BURLINGTON, MASSACHUSETTS O1B03 • (S17) 272·7617 
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Table 0-4. YHC-1A Longitudinal Stability Derivatives (Rate of Descent:;: 1500 ft/min). 
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Table D-5. YHC-1A Lateral Stability Derivatives (Rate of Descent = 1500 ft/min). 
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,..-._-- TF/sec;i- -. . '--'--' ---------

.61510 I' ~~i'23?_ 
-----

X fill .15633 ;20875 .26690 .17058 .09717 -.381'/9 __ '1.:. __ . __ ·iiii:.rr.cicc 
Xo jm Tfrscc~ . 178112 .16228 • 14l,8ll .16227 .18105 -.03466 -.02077 ---:-.-6'0'25 sl 

e --'-£0--

xOc 111\ 'Yf'/scc'3 . f--._---- .. --- '-' -_ .. _-- .--.----~ 
---Til- 1.16992 1.0lI00f.! .90570 .7f.!f.!6J. .62563 .82/ .. 2[; .66268 .l.25691 

u7s'cc::S-
.. __ .. _-_. _. r-'--'-

zjm Yt!sec 
.Ol,316 -.02'.54 - .00971 .00737 .02520 .0'/201 .07620 . .061 Oll : -_._-_. 

-'f.t/sec3 -
C-.-. ," . . --_ ... -. ... - ... -~-:-:-::-

2 1m -.52217 -.60121 -.72925 -.85332 -.%171 -1.02179 -1.06668 -1.12632 
\~ rcrseC:-

~~!Iy.eca- - ~------
Z 1m -1.07268 -1. 20010 -1. 25010 -1. 38662 -1.47426 -1. 871179 -1. 91395 -2.133;'5 
~L ____ t'adl sec ---'-' ._------TErs-cc:r" ----------------

Z6 e /m --Tn-- .05"'1', ' .16010 . • 36218 .4·1296 .l,lll72 .35286 .30425 .25688 
1--:0----. -frrsec.a ._--- ---'-' ----------------_. 

-11.93005 26 1m -7.5865 -7.M041 -8.2l.77 -8. 95l.1 -9.7090 -10 .l18l19 5 -11.30635 c -Tii--
f-----

'!.~~al scc2 .-.---- ---,-- ._--------- --------- ._---.. --- ------_.- ---_ .. __ .. ---_._-----
M II .00251 .00163 .0032]. -.00lI58 -.00l.67 ';.00070 ~.OOO05 '. .00025 
~_~. __ .¥.L ~JJ.l __ ,'?J':s,_._ -... - .. ---_. -'--- ------. . __ ._--- -----_ .. --.. _---- - ' ...... _ ...... --_.-

11 /1 l'"dl scc2 
-.001l,8 .00327 . .00726 .00765 .00730 .00532 .00350 .00?67 ._3.:._._'I.L .. 'jiT~-(;c-' 

');'" d/scc? -------" --- ._------- --_ .. _---_ .. --.--_._- - ... --.-_._--- ------- ... _-_ .. .. , .... -~---............ --_.'---' .. ,., -, ... ' 
H /1 -.93/133 ·1.03020 -1. 2"°/10 -1.3ll.28 -1. '12/13 -1.5221.1, -l.lI9?7r. .. 1.. '11781 _C:L .. n'. __ _i~!.ilTftDg~ ------- ----.-------- ---------_ .. --... ----- ._-_._._, .... _--- ---_ .. - ------.._.'._0. -..---_ .. _, .. _--
N IJ rl1dl sec? . 37l,"/2 . .37930 .110095 .1.3815 .'.6558 .49995 : 51'15S .5~9~~ I_._ .. ~._C: __ ·_~~. -· .. · .. ·rl~I-· .... 

·l.~i~j/s;;-C:lj'· 
_ ... ---_ .. _-_ .. _. 

--.-.--.---~" .•. •• or ___ ." ••• _ ........ _ ----_._.-_ ..• -.. - ._-----.. --_ ... __ ..• . _--------_._ .. ----_ .. _._- .. -" _._ ....... _ •• 0 .. ,,_. __ II'!, /1 . - . 0/1.5 70 - .03118 .01909 .03637 .0/1·21.2 .021% .011135 .00992 DC 'yy -'-'''~i il'-'-" 
Gi' 
~ 

-:, )):Itil (,xl:l.·npola!:ecl fn'lm valuC!s lit 80 1>1I0I':s·. 
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-, .. 
,. 
m 
21 
0 
m 
'U ,. 
n 
m 
m Table 0-7. YHC-1A Lateral Stability Derivatives (Rate of Descent = -1500 ft/min). 
0( 
m ... 
m 
i: 

FORWARD KTS 0 20 40 60 80 100* 120* 140* 
VELOCITY 

~ 6a a in .16567 .15081 .14181 .15535 .20065 .31888 .46288 .51919 

2 
P 
• 

6r in -.23383 -.21772 -.28008 -.42584 -.61869 -.75973 -1.05289 -1.14699 
0 

Yv /rri ' .. ft/se'c3 -.02060 -.08482 -.10455 -.12256 -.14842 -.16761 - ,-; 18487, '. ,-.22163, 
ft/sec-

a 
Z 
m 
< 
Z 

Yp/m ft/sec? -.40249 -.48197 -.63817 -.68143 -.63180 - .42134 -.16458 .30789 
rad/sec 

Yr/m ft/sec3 -.04204 .04052 -.06921 -.04086 .01514 .20713 .19847 .29458 
ra 1/ sec 

m 
m 
II 0 a 
0 
~ 

Y6 a / m ftl sec3 1.03950 1.04228 1. 04066 1.04266 1.06287 1.06455 , L 109'45 1.19557 
l.n 

Y6 1m ftl sec'" .14982 .14802 .12894 .11875 .12938 .14730 .16972 .18351 , r in 

~ -c.n 
II 
~ 

Lv/1xx radl sec3 -.02127 .01846 -.01978 .02294 -.02866 -.03612 -.05148 -.05504 
tt '~el' 

Lp/1xx radl sec'" , -.37496 -.40345 -.45470 -.46318 -.42905 -.32599 -.21490 - .03832 
ract/ sec, 

m 
c 
II 
I"" 

Z 
Ii) 

Lr/lxx rad/sec~, .02907 .06798 .02113 .03740 .07088 .15447 .17575 .25871 
rao7sec ..... ..... 

L6 /lxx rad/ sec3 .48113 .48228 - .48271 .48417 .4n24 -.49139 .50673 .53847 a in 
-4 
0 
~ 

L6/ lxx 
rad/sec" - .13312 - .13406 - .14131 . -.14556 -.14455 -.13801 ' - .13793 -.14978 

In 

~ 
J> 
CD 
Ul 
J> n 

Nv/l zz 
radl sec" .00108 .00098 .00044 .00052 .00041 -.00080 .00079 , .Op396 
-ft7SeC 

Np(lzz rac11 sec~ -,.02133 -.02122 -.02478 -.02754 -.03643 -.05163 -.06046 - .05770 
I rilr1 IIWc 

1: 
c 
Ul 

~ 
CD 

Nr/lzz 
rad/ sec" -.07653 -.06348 -.07218 -.07450 -.08262 -.10902 - .11466 -'.154l.1 ' 
raj/sec 

N6 /I zz rad/sec'" .03076 .03053 • 021.24 .02856 .02918 .02981 .03142 .03255 
a in 

g 
m a 

No /I zz I~seca ;18338 .18355 .18366 . 18Li25 .18730 .18735 .19522 .21125 
r In---

~ .. *Data extrapolated frrnn values at 80 knots.' 
i' 
~ 
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APPENDIX E 

STABILITY DERIVATIVES CH-47 HELICOPTER 

This appendix presents t"he stability derivatives provided by NASA LaRC for 

the CH-47 VALT research helicopter, which will be used to evaluate the advanced 

display concepts for commerciol VTOL aircraft. The column labeled 0.00000 was 

derived by fitting a third order curvf! through -40, -20, +20 and +40 values. 

E - 1 

AEROSPACE SVS"TEMS. INC •• ONE VINE BROOI< PARI< .. BURLINGTON, MASSACHUSETTS 01603 • (au) a72-7e17 
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